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Abstract

Superinvolutions on graded associative algebras constitute a source of Lie and Jordan superalgebras.
Graded versions of the classical Albert and Albert–Riehm Theorems on the existence of superinvolutions
are proven. Surprisingly, the existence of superinvolutions of the first kind is a rare phenomenon, as non-
trivial central division superalgebras are never endowed with this kind of superinvolutions.
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1. Introduction

Albert’s Theorem (see [1,12]) asserts that a finite dimensional central simple algebra has an
involution of the first kind if and only if the order of its class in the Brauer group is at most 2,
while Albert–Riehm Theorem (see [11,12]) asserts that a necessary and sufficient condition for
the existence of an involution of the second kind is that the so-called corestriction is trivial in the
Brauer group.
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Given an associative superalgebra (that is, a graded associative algebra) A = A0 ⊕A1, a super-
involution is a graded linear map ξ :A → A, which is a superantiautomorphism (that is, ξ(xy) =
(−1)xyξ(y)ξ(x) for any homogeneous elements x, y ∈ A) and such that ξ2 is the identity map.
The set of skew elements of a superinvolution {x ∈ A: ξ(x) = −x} is a Lie superalgebra under
the graded bracket: [x, y] = xy − (−1)xyyx, while the set of fixed elements {x ∈ A: ξ(x) = x}
is a Jordan superalgebra under the supersymmetrized product: x ◦ y = xy + (−1)xyyx. Many of
the classical simple Lie and Jordan superalgebras (see [6,10]) arise in this way. Superinvolutions
on primitive associative superalgebras were studied by Racine [9] and used in the classification
of the simple Jordan superalgebras [10].

The purpose of this paper is to obtain necessary and sufficient conditions for a finite di-
mensional central simple associative superalgebra to be endowed with a superinvolution, thus
obtaining analogues in the graded setting of the classical Albert and Albert–Riehm Theorems.

Surprisingly, superinvolutions of the first kind are more difficult to deal with, and it turns out
that the natural analogue of Albert Theorem is false: even if the class in the Brauer–Wall group
of a central simple algebra has order at most 2, the superalgebra may have no superinvolution
of the first kind. Indeed, central simple superalgebras of odd type never have superinvolutions of
the first kind (Theorem 28), and the same happens for central division superalgebras of even type
with nontrivial odd part (Lemma 31 and Theorem 32). However, Albert Theorem has a graded
version, where superinvolutions are substituted by superantiautomorphisms whose square is the
grading automorphism (Theorem 38).

The situation is nicer for superinvolutions of the second kind. For these, the natural graded
version of the classical Albert–Riehm Theorem holds.

The paper is organized as follows. The next section is intended to recall the basic definitions
and results on associative superalgebras. The basic sources are Lam’s book [8] and Racine’s
paper [9]. Some results will be proved in slightly different ways, useful for our purposes. Then
Section 3 will deal with superinvolutions of the first kind on central simple superalgebras. It
will be shown that the existence of such superinvolutions is severely restricted. Section 4 will
be devoted to prove the above mentioned graded version of the classical Albert Theorem, while
superinvolutions of the second kind and the graded version of Albert–Riehm Theorem will be
the object of the last section.

When this work was complete, the authors learnt from Professor Michel Racine that his former
student Amer Jaber [3–5] had obtained similar results, although the approach and the proofs are
different. Actually, [3] deals with the existence of superinvolutions of the first kind, which is the
content of Section 3 in this paper, [4] with superinvolutions of the second kind (Section 5 here),
and [5] with ‘pseudo-superinvolutions,’ which are the superantiautomorphisms whose square is
the grading automorphism (Section 4).

2. Basic concepts

2.1. Definitions and notations

We recall some basic definitions (compare with [8, Chapter IV]). Let F be a field of character-
istic different from 2. (This restriction will be assumed without mention throughout the paper.)
A superalgebra (also called graded algebra) A is an (associative) F -algebra given in the form
A = A0 ⊕ A1, F = F · 1 ⊆ A0 and AiAj ⊆ Ai+j (subscripts modulo 2). We observe that A0

is a subalgebra of A. The elements of hA := A0 ∪ A1 are called homogeneous elements of A.



4340 A. Elduque, O. Villa / Journal of Algebra 319 (2008) 4338–4359
For h ∈ hA − {0} we define the degree δh of h by δh = i if h ∈ Ai (i = 0,1). To simplify the
notation, for every homogeneous element x we define (−1)x := (−1)δx .

A subspace S ⊆ A is called graded if it is the direct sum of the intersections Si := S ∩ Ai .
We define h(S) = S ∩ h(A). The graded center of the superalgebra A is Ẑ(A) := {x ∈ hA |
xh = (−1)xhhx ∀h ∈ hA}. We shall call A a central superalgebra over F if Ẑ(A) = F . The
superalgebra A is said to be a simple superalgebra over F if A has no proper ( �= 0, �= A) graded
twosided ideals. A finite dimensional simple superalgebra which is also a central superalgebra is
called central simple superalgebra (CSS, CSGA in Lam’s book, see [8]).

The ordinary center of A, i.e. Z(A) = {x ∈ A | xa = ax ∀a ∈ A}, is a graded subalgebra. If A

is a CSS over F , then Z(A) = F ⊕ Z1 (Z1 ⊆ A1). If Z1 = 0, we say that A is of even type. If
Z1 �= 0, we say that A is of odd type.

We denote the graded tensor product of two graded algebras A and B by A ⊗̂ B . We denote
the Brauer group of a field F with B(F) (respectively the Brauer–Wall group with BW(F )). The
opposite (respectively superopposite) algebra of a central simple algebra (respectively CSS) A is
denoted Aop (respectively As ; in Lam’s book the algebra As is denoted by A∗, see [8, pp. 80, 99]).

Examples 1. We list some important examples of CSSs.

(a) We denote with (A) the algebra A with the grading given by A1 = 0.
(b) Let A, B be CSSs. Then A ⊗̂ B is a CSS.
(c) Let a ∈ F×. The space F ⊕ Fu with the relation u2 = a and the grading δu = 1 defines a

CSS denoted by F 〈√a 〉. We call it quadratic graded algebra.
(d) For a, b ∈ F× we define the graded quaternion algebra as follows: 〈a, b〉 := F 〈√a 〉 ⊗̂

F 〈√b 〉 (see [8, p. 87]).
(e) Let D be a central division algebra over a field F . The algebra of (n+m)× (n+m)-matrices

Mn+m(D) can be viewed as CSS by taking the diagonal components Mn(D) and Mm(D) as
the even part and the off-diagonal components as the odd part.

Remark 2. We observe that the definitions in examples (c) and (d) cover all nontrivial gradings
on a quadratic algebra and on a quaternion algebra. For example, given a quaternion algebra with
nontrivial grading, the odd elements are orthogonal to 1 with respect to the (quaternionic) norm
and hence they have zero trace. Since the restriction of the norm to the space of odd elements is
not degenerate, then the algebra is forced to be of the form 〈a, b〉 for some a, b ∈ F×.

For completeness, we recall the structure theorems for CSSs (see [8, Chapter IV, 3.6 and 3.8]).

Theorem 3. Let A be a CSS of odd type. Then:

(1) Z(A) = F ⊕ Fz, where z ∈ Z1 and z2 = a ∈ F×. The square class of a does not depend on
the choice of z ∈ Z1 − {0}, and Z(A) � F 〈√a 〉 as graded algebras.

(2) There are graded algebra isomorphisms

A � (A0) ⊗̂ F 〈√a 〉 � (A0) ⊗ F 〈√a 〉.
(3) If a /∈ F×2, then A is a central simple algebra over Z(A) � F(

√
a ). If a ∈ F×2, then

Z(A) � F × F , and A � A0 × A0 (as ungraded algebra).

In any case, A is a semisimple separable F -algebra.



A. Elduque, O. Villa / Journal of Algebra 319 (2008) 4338–4359 4341
Theorem 4. Let A be a CSS of even type, A1 �= 0. Suppose A is isomorphic, as ungraded algebra,
to Mn(D), the central simple F -algebra of n × n-matrices with entries in the central division
algebra D over F . Then:

(1) There exists an element z ∈ Z(A0) such that Z(A0) = F ⊕Fz and z2 = a ∈ F×. The element
z is determined up to a scalar multiple by these properties, and hence the square class of a

is uniquely determined.
(2) Suppose a ∈ F×2. Then Z(A0) � F ×F and A � Mr+s(F ) ⊗̂ (D) with r + s = n. Moreover,

A0 � Mr(D) × Ms(D).
(3) Suppose a /∈ F×2, and the field Z(A0) � F(

√
a ) can be embedded into D. Then there exists

a grading on D such that A � (Mn(F )) ⊗̂ D. In this case, A0 � Mn(D0) is a central simple
algebra over Z(A0).

(4) Suppose a /∈ F×2, and the field Z(A0) � F(
√

a ) cannot be embedded into D. Then n = 2m

is even, and A � (Mm(D)) ⊗̂ 〈−a,1〉 as graded algebras. In this case, A0 � Mm(D) ⊗̂
F(

√
a ) is a central simple algebra over Z(A0).

In any case, A0 is a semisimple separable F -algebra.

We call an algebra central division superalgebra (CDS) if it is a CSS where every nonzero
homogeneous element is invertible.

Remark 5. If A is a CSS of even type (A1 �= 0, Z(A0) = F ⊕Fz and z2 = a ∈ F×) with a /∈ F×2

(i.e. in the cases (3) and (4) of the theorem above), then we may write it as

A � (
Mn(F)

) ⊗̂ Δ

where Δ is a CDS (see for example Theorem 2 in [2] or the proof of [8, Chapter IV, 3.8]).
On the other hand, if A is a CSS of odd type, then it is of the form (Mk(F )) ⊗̂ Δ, where Δ is

a CDS of odd type.

Let A = A0 + A1 be a superalgebra. For all x ∈ A0, y ∈ A1 we define ν(x + y) = x − y.
The induced map ν is a graded automorphism of A called the grading automorphism (the main
involution in Lam’s book, see [8, Chapter IV, Definition 3.7]). If A is a CSS of even type with
Z(A0) = F1 + Fz and z2 ∈ F×, then recall that ν(x) = zxz−1; in particular, we have uz = −zu

for all u ∈ A1. A superantiautomorphism of a superalgebra A is a graded additive map σ :A → A

such that for all aα ∈ Aα and bβ ∈ Aβ σ(aαbβ) = (−1)αβσ (bβ)σ (aα). We call superinvolution
of A a superantiautomorphism τ such that τ 2(x) = x for all x ∈ A. As for involutions, we say
that the superinvolution is of the first kind if it is F -linear, and of the second kind otherwise.

Remark 6. Let A, B be CSSs over F with superinvolutions τA and τB . The map τA ⊗ τB is a
superinvolution on A ⊗̂ B .

Before the study of involutions of the first kind, we consider the case of the CSS Mn+m(F):
it shows that the existence of a superantiautomorphism does not always imply the existence of
a superinvolution. However, here it is easy to see that there is always a superantiautomorphism
whose square is the grading automorphism.
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Proposition 7. The CSS Mn+m(F) has always a superantiautomorphism ϕ with ϕ2 = ν. It has a
superinvolution of the first kind if and only if n = m or nm is even.

Proof. As usual, we denote the transpose of a matrix a with at . We observe that the map

ϕ :Mn+m(F) → Mn+m(F),

(
a b

c d

)
�→

(
at −ct

bt dt

)

is a superantiautomorphism. Moreover, one can check easily that ϕ2 = ν.
For the case n = m, it is enough to observe that the map

τ :Mn+n(F ) → Mn+n(F ),

(
a b

c d

)
�→

(
dt −bt

ct at

)

is a superinvolution. If n �= m and τ is a superinvolution on Mn+m(F), then τ is adjoint to a
superform (see [9, Theorem 7] or Theorem 21). Such a superform can be defined if and only if n

or m is even. �
2.2. The graded Skolem–Noether Theorem

In this section we give a version of the Skolem–Noether Theorem for superalgebras (see also
Lemma 1 in [11]).

For any homogeneous and invertible element of a superalgebra A, consider the inner auto-
morphism ιa given by

ιa(x) = (−1)axaxa−1

for any homogeneous x ∈ A. We denote the disjoint union with �. In the next proposition we
describe the set Autg(A) of graded F -linear automorphisms of A.

Proposition 8. Let A be a CSS. Then Autg(A) = ιA×
0

� ιA×
1

.

Proof. Let ϕ be an element of Autg(A). We can write A = End(ΔV ), where V is a graded
vector space with the action of the CDS Δ on the left. We assume that A1 �= 0 (i.e. V1 �= 0).
Let Ψ :Δs ⊗̂ A → EndF (V ), defined by d ⊗ a �→ (Ψ (d ⊗ a) :v �→ (−1)dvdva). By dimension
count, Ψ is an isomorphism of CSS. There are two Δs ⊗̂ A-module structures on V , namely
v.(d ⊗ a) = (−1)dvdva and v � (d ⊗ a) = (−1)dvdvaϕ . But the only irreducible EndF (V )-
modules of EndF (V ) are V and V s , the superopposite module of V , i.e. V with the roles of V0
and V1 interchanged.

Two cases may occur.

1. There exists an F -linear even isomorphism σ : V → V such that v.(d ⊗ a)σ = (vσ )� (d ⊗ a)

for all d ∈ Δ, v ∈ V , a ∈ A.
Setting a = 1 we obtain that σ ∈ A0. Then, setting d = 1, we get ϕ = ισ .

2. There exists an F -linear odd isomorphism σ :V → V such that

v.(d ⊗ a)σ = (−1)a(−1)d(vσ ) � (a ⊗ d)

for all d ∈ Δ, v ∈ V , a ∈ A. Setting again, as before, a = 1 and d = 1 we get ϕ = ισ . �
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Remark 9. If, in the proposition above, A is even, then the grading automorphism is ν = ιz,
where z is any element such that Z(A0) = F1 + Fz and z2 ∈ F×. If A is odd, then Z(A) =
F1 + Fz for an invertible odd element z, and again ν = ιz. Since here A1 = A0z, it follows that
ιA×

1
= ν ◦ ιA×

0
.

Remark 10. If ϕ ∈ Autg(A) fixes Z(A) and Z(A0) elementwise, then ϕ ∈ ιA×
0

.

2.3. The graded Jacobson density theorem and superinvolutions

The results of Michel Racine (see [9]) for prime superalgebras with superinvolution will be
proven in a slightly different way. In this context we use words prime and semiprime in the
obvious graded sense. We observe that every simple superalgebra is prime.

Lemma 11. Let A be a semiprime superalgebra. Then

(i) (Brauer) If I is a minimal right ideal of A, then there is an idempotent e ∈ I0 such that I =
eA. Moreover, for any homogeneous element x ∈ I with xI �= 0, there exists an idempotent
e = e2 ∈ I such that I = eA and ex = xe = x.

(ii) If e is a nonzero idempotent of A0 and eA = I is a minimal right ideal of A, then eAe is a
division superalgebra, which is isomorphic to the centralizer superalgebra EndA(I).

(iii) If e is a nonzero idempotent of A0 such that eAe is a division superalgebra, then eA is a
minimal right ideal of A.

(iv) If a is a homogeneous element of A such that aA is a minimal right ideal of A, then Aa is
a minimal left ideal of A.

Proof. For (i), note that I 2 �= 0 by semiprimeness, so I 2 = I by minimality and there is a nonzero
homogeneous element x ∈ I0 ∪I1 such that xI �= 0. Again, since I is minimal, I = xI , and hence
there is an element e ∈ I0 such that x = xe. Take J = {r ∈ I : xr = 0}. Then J is a right ideal of
A strictly contained in I , so J = 0. Since e2 − e ∈ J , we conclude that e is a nonzero idempotent
of I0, and since 0 �= eI ⊆ I , the minimality of I forces I = eI , as desired. In particular ey = y

for any y ∈ I , so the last assertion follows.
For (ii) notice that if x is a homogeneous element of A such that exe �= 0, then 0 �= exeA ⊆ eA

so exeA = eA by minimality. Therefore there exists a homogeneous element y ∈ A such that
exey = e, so (exe)(eye) = e, which is the unity of the superalgebra eAe. Therefore, any nonzero
homogeneous element of eAe has a right inverse. This is enough to ensure that eAe is a division
superalgebra. Besides, the linear map eAe → EndA(I) given by exe �→ ρexe : I → I , such that
ρexe(z) = exez for any z ∈ I is easily shown to be an isomorphism. Note that this is valid even
if A is not semiprime.

Now assume that 0 �= e = e2 ∈ A0 satisfies that eAe is a division superalgebra, and let I

be a nonzero right ideal contained in eA. Let x be a nonzero homogeneous element of I , so
x = ex. If exAe were 0, then (AexA)2 would be 0 too, contradicting the semiprimeness of A.
Therefore there is a homogeneous element y ∈ A such that exye �= 0, and since eAe is a division
superalgebra, there is another homogeneous element z such that xyeze = (exye)(eze) = e. In
particular, e ∈ xA and eA ⊆ xA ⊆ I , so I = eA. This shows that eA is a minimal right ideal.

Finally, assume that a is a homogeneous element such that aA is a minimal right ideal. As
in (i), let e be an idempotent such that ae = ea = a and aA = eA. Because of (ii), eAe is a
division superalgebra, and by symmetry, item (iii) shows that Ae is a minimal left ideal. But
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Aa �= 0 by semiprimeness, and Aa = (Ae)a is a homomorphic image of the irreducible left
module Ae, so it is irreducible too. That is, Aa is a minimal left ideal. �

The idempotents e such that eAe is a division superalgebra will be called primitive idempo-
tents. Given a superinvolution ∗ in an associative superalgebra, H(A,∗) and S(A,∗) will denote,
respectively, the set of fixed elements by ∗ and the set of elements x ∈ A such that x∗ = −x.

Theorem 12. Let A be a prime superalgebra with minimal right ideals, and let ∗ be a superin-
volution of A. Then one and only one of the following situations occurs:

(i) There exists a primitive idempotent such that e∗ = e.
(ii) A1 = 0 and there exists a primitive idempotent such that eH(A,∗)e∗ = 0. In this case eAe

is a field and there are elements u ∈ eAe∗ and v ∈ e∗Ae such that u,v ∈ S(A,∗), uv = e

and vu = e∗.
(iii) There exists a primitive idempotent such that eA0e

∗ = 0. In this case, this idempotent e

can be taken satisfying that there are elements u ∈ eA1e
∗ with u∗ = u and v ∈ e∗A1e with

v∗ = −v, such that uv = e and vu = e∗.

Proof. Assume that there is a minimal right ideal I and a homogeneous element a ∈ I such that
aa∗I �= 0. Then take x = aa∗ (∈ I ) and note that x∗ = (−1)xx. By Lemma 11 there is a prim-
itive idempotent e ∈ I with I = eA and xe = ex = x. Therefore, xee∗ = xe∗ = (−1)xx∗e∗ =
(−1)x(ex)∗ = (−1)xx∗ = x. Then, as in the proof of Lemma 11, f = ee∗ is an idempotent, with
f ∗ = f and I = f A and case (i) appears.

Otherwise, for any minimal right ideal I of A, and any homogeneous element a ∈ I , aa∗I = 0
holds. Take a minimal right ideal I of A and assume that there exists a homogeneous element
a ∈ I such that aa∗ �= 0. By minimality, I = aa∗A = aA, and I ∗I = Aaa∗aa∗A ⊆ A(aa∗I ) = 0.
By Lemma 11(iv), Aa is a minimal left ideal, and hence a∗A = (Aa)∗ is a minimal right ideal.
Take J = a∗A. If there were a homogeneous element x in J with xx∗ �= 0, as before we would
have 0 = J ∗J = Aaa∗A, but this is impossible since A is semiprime.

Hence, either the situation in (i) holds or there is a minimal right ideal I of A such that

xx∗ = 0 for any homogeneous element x ∈ I . (13)

(Notice that up to now the arguments are valid assuming only that A is semiprime.)
Let I be such a minimal right ideal. By Lemma 11, I = eA for a primitive idempotent e.

Hence, for any homogeneous element x ∈ A, exx∗e∗ = (ex)(ex)∗ = 0. In particular, for any
x ∈ A0, e(e + x)(e + x)∗e∗ = 0 = ee∗ = exx∗e∗, so e(x + x∗)e∗ = 0 (that is, eH(A0,∗)e∗ = 0),
or

(ex0e
∗)∗ = −ex0e

∗ (14)

for any x0 ∈ A0. (Note that if A1 = 0, this condition is equivalent to the condition in (13).)
Assume first that eA0e

∗ �= 0, and take z ∈ A0 such that eze∗ �= 0. By primeness, eze∗Ae �= 0,
and since eAe is a division superalgebra, we can obtain easily another element t ∈ A0 such that
eze∗te = e. Take u = eze∗ and v = e∗te, so uv = e. Besides, u∗ = −u holds by (14).

Now, v2 = e∗t (ee∗)te = 0 (by (13)), u2 = −uu∗ = 0, as u ∈ I0, e∗e = (uv)∗uv = v∗u∗uv =
−v∗u2v = 0, and v = e∗v = (uv)∗v = v∗u∗v = −v∗uv = −v∗e = −v∗, so e∗ = v∗u∗ =
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(−v)(−u) = vu. Let us denote by Δ the division superalgebra eAe. Consider the linear map
Δ → Δ: d �→ d̄ = ud∗v. Note that for any homogeneous d, d1, d2 ∈ Δ:

¯̄d = u(ud∗v)∗v = uv∗du∗v = uvduv = ede = d,

d1d2 = u(d1d2)
∗v = (−1)d1d2ud∗

2 d∗
1 v = (−1)d1d2ud∗

2 e∗d∗
1 v

= (−1)d1d2ud∗
2 vud∗

1 v = (−1)d1d2 d̄2d̄1.

Therefore, this map is a superinvolution. But for any d ∈ Δ0,

d̄ = ud∗v = eud∗e∗v = −(eud∗e∗)∗v = −edu∗e∗v = eduv = ede = d,

where we have used (14), together with the fact that u∗ = −u and uv = e. Therefore the restric-
tion of the superinvolution d �→ d̄ is the identity, and since this is an ordinary involution of the
division algebra Δ0, we conclude that Δ0 is a field. Besides, for any d ∈ Δ1 with d̄ = ±d (that
is d ∈ H(Δ,−)1 ∪ S(Δ,−)1), d2 ∈ Δ0, so d2 = d2. Hence

d2 = d2 = (−1)dd d̄2 = −d2.

Thus d2 = 0, and since Δ is a division superalgebra, d = 0. Hence Δ1 = H(Δ,−)1 ⊕
S(Δ,−)1 = 0, and Δ = Δ0 is a field. But for any x, y ∈ A1, e(x +y)(x +y)∗e∗ = 0 = exx∗e∗ =
eyy∗e∗ by (13), so exy∗e∗ = −eyx∗e∗. On the other hand, (14) shows that (exy∗e∗)∗ =
−exy∗e∗, that is, −eyx∗e∗ = −exy∗e∗. We conclude that exy∗e∗ = 0 for any x, y ∈ A1.
Therefore, eA1A1e

∗ = 0, so eA1A1v = eA1A1e
∗v = 0. But eA1A0v ⊆ eA1e = Δ1 = 0. Hence

eA1Av = 0, which implies, since A is prime, that eA1 = 0. Now, eAA1 = eA0A1 + (eA1)A1 ⊆
eA1 + (eA1)A1 = 0, and A1 = 0 by primeness. We are in case (ii) of the theorem, since
eH(A,∗)e∗ is 0 because of (14).

Finally, assume that the minimal right ideal I = eA satisfies (13), but eA0e
∗ = 0. Again, let

Δ be the division superalgebra eAe. Since eAe∗ = eA1e
∗ �= 0 and Δ1eA1e

∗ ⊆ eA0e
∗ = 0, and

the nonzero elements of Δ1 are invertible, it follows that Δ1 = 0 in this case.
If there exists an odd element x ∈ A1 such that e(x + x∗)e∗ �= 0, then there is an element z =

x + x∗ = z∗ ∈ A1 such that eze∗ �= 0. As before we find an element t ∈ A1 such that eze∗te = e

and take u = eze∗ and v = e∗te. Then u∗ = ez∗e∗ = u, uu∗ = 0 = ee∗ because of (13), so u2 = 0.
Also, v = e∗v = (uv)∗v = −(v∗u∗)v = −v∗uv = −v∗e = −v, and e∗ = (uv)∗ = −v∗u∗ = vu,
thus obtaining the situation in item (iii) of the theorem.

Otherwise, for any x ∈ A1 e(x + x∗)e∗ = 0, or (exe∗)∗ = −(exe∗). As before there are
z, t ∈ A1 such that eze∗te = e. Take u = eze∗ and v = e∗te, so that e = uv, but now u∗ = −u

and v = e∗v = (uv)∗v = −v∗u∗v = v∗uv = v∗e = v∗, and e∗ = (uv)∗ = −v∗u∗ = vu. Con-
sider in this case the primitive idempotent f = e∗. Then f A0f

∗ = vuA0uv = ve(uA0u)e∗v ⊆
v(eA0e

∗)v = 0, so in particular the condition in (13) holds trivially for the minimal right
ideal f A, and f (v + v∗)f ∗ = 2f vf ∗ = 2v �= 0. Therefore, it is enough to change e to f to
obtain the situation in item (iii).

To finish the proof of the theorem, it must be checked that only one of the three possible
situations occur. It is clear that (ii) and (iii) are mutually exclusive, since A1 = 0 in (ii) but not
in (iii). Also, if e is a primitive idempotent as in (i), I = eA, and f is a primitive idempotent such
that the minimal right ideal J = f A satisfies the condition in (13), then by primeness IJ �= 0,
so by minimality I = IJ . Thus, there is a homogeneous element x ∈ I such that 0 �= xJ and
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I = xJ by minimality. Then e = xz for some homogeneous element z ∈ J of the same parity
as x. But e = e2 = ee∗ = (xz)(xz)∗ = ±xzz∗x∗, which is 0 by (13), a contradiction. Therefore,
case (i) is not compatible with cases (ii) or (iii). �

Let (Δ,−) be a division superalgebra endowed with a superinvolution, let V be a left module
over Δ and let h :V × V → Δ be an ε-hermitian (ε = ±1) nondegenerate form of degree l

(l ∈ {0,1}). That is, h is biadditive, h(Vi,Vj ) ⊆ Δi+j+l for any i, j ∈ {0,1} and

h(dx, y) = dh(x, y), h(y, x) = ε(−1)xyh(x, y)

for any homogeneous elements x, y ∈ V0 ∪ V1 and d ∈ Δ. This implies that h(x, dy) =
(−1)dyh(x, y)d for any homogeneous x, y ∈ V and d ∈ Δ.

The case of Δ1 = 0, Δ0 a field, − the identity and ε = −1 corresponds to the alternating
bilinear forms over a field. If ε = 1, h will just be said to be an hermitian form.

Consider the superalgebra with superinvolution L(V ) with

L(V )i = {
f ∈ EndΔ(V )i : ∃f ∗ ∈ EndΔ(V ) such that

h(xf, y) = (−1)fyh(x, yf ∗) ∀x ∈ V, ∀y ∈ V0 ∪ V1
}
.

Note that f ∗ is unique by the nondegeneracy of f , which gives the superinvolution in L(V ), and
that the action of the elements of EndΔ(V ) is written on the right.

For any homogeneous elements v,w ∈ V , consider the Δ-linear map hv,w given by:

a �→ ahv,w = h(a, v)w.

For any homogeneous x, y, v,w ∈ V ,

h(xhv,w, y) = h(x, v)h(w,y)

= (−1)v(w+y)h
(
x,h(w,y)v

)
= ε(−1)v(w+y)+wyh

(
x,h(y,w)v

)
= ε(−1)v(w+y)+wyh(x, yhw,v),

so that

(hv,w)∗ = ε(−1)vwhw,v (15)

for any homogeneous v,w ∈ V . Also, for any homogeneous f ∈ L(V ):

hv,wf = hv,wf , f hv,w = (−1)f vhvf ∗,w. (16)

Therefore, the span hV,V of the hv,w’s is an ideal of L(V ) closed under the superinvolu-
tion, and it acts irreducibly on V . Besides, for any homogeneous element ψ in the centralizer
EndhV,V

(V ) (action on the left), and any homogeneous x, v,w ∈ V , ψ(xhv,w) = ψ(x)hv,w , so
that, if h(x, v) = 0, then also h(ψx, v) = 0. Since h is nondegenerate, there is a homogeneous
element dx ∈ Δ such that ψ(x) = dxx. If now we take v with h(x, v) = 1, then we obtain that
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ψ(w) = dxw for any homogeneous w. That is, ψ is the left multiplication by dx . This shows that
the centralizer of the action of hV,V on V is Δ.

Lemma 17. Let A be an associative superalgebra and let V be an irreducible right A-module
with centralizer Δ = EndA(V ) (action of Δ on the left), which is a division superalgebra by
Schur’s Lemma. Then for any homogeneous Δ-linearly independent elements v1, . . . , vn there is
a homogeneous element a ∈ A such that v1a �= 0, v2a = · · · = vna = 0.

Proof. This is proved by induction on n, the case n = 1 being trivial. Assuming the result
proven for n − 1, let J = {a ∈ A: v3a = · · · = vna = 0} be the right annihilator of v3, . . . , vn.
By the induction hypothesis v2J �= 0 �= v1J , and by irreducibility V = v2J = v1J . If there
is a homogeneous element a ∈ J with v2a = 0 �= v1a, we are done. Otherwise, the map
ψ :V = v2J → V = v1J such that ψ(v2a) = v1a for any a ∈ J is well defined and belongs
to the centralizer EndA(V ) = Δ, so that ψ = d for some homogeneous element d ∈ Δ. But then
(v1 − dv2)J = 0, so by the induction hypothesis, v1 − dv2 ∈ Δv3 + · · · + Δvn, a contradic-
tion. �
Corollary 18 (Jacobson’s density). Let A be an associative superalgebra and let V be an irre-
ducible right A-module with centralizer Δ = EndA(V ) (action of Δ on the left). Then for any
homogeneous Δ-linearly independent elements v1, . . . , vn and for any elements w1, . . . ,wn there
is an element a ∈ A such that via = wi for i = 1, . . . , n.

Corollary 19. Let (Δ,−) be a division superalgebra endowed with a superinvolution, and let
V be a left Δ-module endowed with a nondegenerate ε-hermitian form h :V × V → Δ. Then
hV,V is the only simple ideal of any subalgebra of L(V ) containing it. In particular, any such
subalgebra is prime.

Proof. If f is a nonzero homogeneous element of hV,V and it is written as f = ∑n
i=1 hvi,wi

(for
homogeneous vi,wi , i = 1, . . . , n), with minimal n, then w1, . . . ,wn are linearly independent
over Δ, so by Lemma 17 there is a homogeneous element g ∈ hV,V such that ŵ1 = w1g �= 0 and
w2g = · · · = wng = 0. Because of (16) fg = hv1,ŵ1 , and using again (16) it follows that hV,V

is simple. Also, (16) shows that the ideal generated by any element of a subalgebra of L(V )

containing hV,V intersects hV,V nontrivially. Hence the result. �
The following result follows at once from (16):

Lemma 20. With the same hypotheses as in Corollary 19, for any nonzero homogeneous element
v ∈ V , hv,V is a minimal right ideal of any subalgebra of L(V ) containing hV,V .

Note that, under the hypotheses of the lemma, a homogeneous element w ∈ V can be
taken with h(w,v) = 1. Then, the even element e = hv,w ∈ hV,V is an idempotent with e∗ =
ε(−1)vwhw,v because of (16) and (15).

Theorem 21. Let A be a prime superalgebra with minimal right ideals, and let ∗ be a superin-
volution of A. Then one and only one of the following situations occurs:

(i) There exists a division superalgebra with a superinvolution (Δ,−), a left Δ-module V

with V0 �= 0 endowed with a nondegenerate hermitian even superform h :V × V → Δ,
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and a faithful representation ρ :A → EndΔ(V ) such that ρ(A) is a subalgebra of L(V ),
containing hV,V , closed under the superinvolution of L(V ), and such that ρ(a∗) = ρ(a)∗
for any a ∈ A.

(ii) A1 = 0, and there is a field F and a vector space V over F endowed with a nondegenerate
alternating bilinear form h :V × V → F and a faithful representation ρ :A → EndF (V )

such that ρ(A) is a subalgebra of L(V ), containing hV,V , closed under the superinvolution
of L(V ), and such that ρ(a∗) = ρ(a)∗ for any a ∈ A.

(iii) There exists a division algebra with an involution (D,−), a left Z2-graded vector space V

endowed with a nondegenerate hermitian odd form h :V ×V → D, and a faithful represen-
tation ρ :A → EndD(V ) such that ρ(A) is a subalgebra of L(V ), containing hV,V , closed
under the superinvolution of L(V ), and such that ρ(a∗) = ρ(a)∗ for any a ∈ A.

Conversely, any such superalgebra is prime, contains minimal right ideals and it is endowed with
a superinvolution.

Proof. Let A be a prime superalgebra with minimal right ideals, and let ∗ be a superinvolution
of A. According to Theorem 12 three possible situations happen:

(i) There exists a primitive idempotent e with e∗ = e. In this case, let Δ = eAe, which is a
division superalgebra with involution − given by the restriction of ∗, let V = eA, let h :V ×
V → Δ given by h(x, y) = xy∗ for any x, y ∈ V , and let ρ :A → EndΔ(V ) be the map given by
x �→ Rx (the right multiplication by x). It is clear that h is an even nondegenerate hermitian form.
Note that for homogeneous x = ea, y = eb and z = ec in eA (a, b, c ∈ A), zhx,y = h(z, x)y =
zx∗y = za∗eb, so hV,V = RAeA, which is obviously contained in RA. Hence, all the conditions
in (i) are satisfied.

(ii) A1 = 0 and there exists a primitive idempotent such that eH(A,∗)e∗ = 0. In this case
eAe is a field and there are elements u ∈ eAe∗ and v ∈ e∗Ae such that u,v ∈ S(A,∗), uv = e

and vu = e∗ hold. Consider here the field F = eAe, let V = eA, and let h :V × V → F given
by h(x, y) = xy∗v. Since eH(A,∗)e∗ = 0, for any x ∈ V h(x, x) = (ex)(ex)∗v = exx∗e∗v ∈
eH(A,∗)e∗v = 0, so h is alternating, and nondegenerate by primeness. With ρ(x) = Rx as be-
fore, the conditions in (ii) are satisfied.

(iii) There exists a primitive idempotent such that eA0e
∗ = 0 and two elements u ∈ eA1e

∗ with
u∗ = u and v ∈ e∗A1e with v∗ = −v, such that uv = e and vu = e∗. The proof of Theorem 12
shows that eA1e = 0, so consider the division algebra D = eAe = eA0e, the left vector space
V = eA and the map h :V × V → D given by h(x, y) = xy∗v. Again, the proof of Theorem 12
shows that the map − :D → D given by d̄ = ud∗v is an involution, and then h becomes an odd
nondegenerate hermitian form, because for homogeneous elements x, y ∈ V ,

h(y, x) = yx∗v = eyx∗v = u(vyx∗)v

= (−1)vy+vx+xyu(xy∗v∗)v

= −(−1)x+y+xyu(xy∗v)v (as v∗ = −v and v is odd)

= h(x, y)

as h(x, y) = 0 = h(y, x) unless x and y have different parity. The conditions in (iii) are satisfied
here.

Conversely, identifying A with ρ(A) in all the cases, A is a prime superalgebra with superin-
volution because of Corollary 19. Now for any nonzero homogeneous element v ∈ V , I = hv,V is
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a minimal right ideal of A (Lemma 20) generated by the primitive idempotent e = hv,w , where w

is a homogeneous element with h(v,w) = 1, which satisfies e∗ = (−1)vwhw,v (see the paragraph
after Lemma 20).

Under the conditions of item (i), there is a nonzero element v ∈ V0 such that h(v, v) �= 0,
because otherwise, for any v,w ∈ V0, h(v,w) = −h(w,v) = −h(v,w), so the restriction of the
superinvolution − to Δ0 would be minus the identity, which is impossible. Now, if v ∈ V0 and
h(v, v) = d �= 0, then h(w,v) = 1 with w = d−1v. Besides d̄ = h(v, v) = h(v, v) = d , so with
e = hv,w , e∗ = h∗

v,w = hw,v :x �→ h(x, d−1v)v = h(x, v)d−1v = xhv,w , and e∗ = e. Thus A

satisfies the hypotheses of Theorem 12(i).
Under the conditions of item (ii), let e = hv,w with h(v,w) = 1, so e∗ = hw,v . Now, for any

f ∈ H(A,∗),

ef e∗ = hv,wf hw,v = hv,wf hw,v = hv,wf hw,v = hv,h(wf,w)v = 0,

as h(wf,w) = h(w,wf ∗) = h(w,wf ) = −h(wf,w), since h is alternating and f ∈ H(A,∗).
Thus A satisfies the hypotheses of Theorem 12(ii).

Finally, under the conditions of item (iii), take v ∈ V0 and w ∈ V1 such that h(v,w) = 1,
and take the primitive idempotent e = hv,w . Then, for any f ∈ L(V )0, ef e∗ = hv,h(wf,w)v = 0,
as h(w,wf ) ∈ h(V1,V1) = 0. Hence eAe∗ = 0 and thus A satisfies the hypotheses of Theo-
rem 12(iii).

Since the three possibilities in Theorem 12 are mutually exclusive, the same is valid here. �
Remark 22. If the condition of V0 �= 0 is omitted in item (i) of Theorem 21, then item (i) would
include the situation of item (ii), as any alternating bilinear form on a vector space V over a field
is an hermitian even form on the vector superspace V = V1.

Because of Jacobson’s Density (Corollary 18), if A is a finite dimensional associative superal-
gebra and V is an irreducible right module for A, then V is finite dimensional and A is isomorphic
to EndΔ(V ), where Δ = EndA(V ) is a finite dimensional division superalgebra. Hence:

Corollary 23. Let A be a finite dimensional simple superalgebra with A1 �= 0, and let ∗ be a
superinvolution of A. Then one and only one of the following situations occurs:

(i) There exists a finite dimensional division superalgebra with a superinvolution (Δ,−), a fi-
nite dimensional left Δ-module V with V0 �= 0 endowed with a nondegenerate hermitian
even superform h :V × V → Δ, and an isomorphism of superalgebras with superinvolution
ρ :A → EndΔ(V ) (the superinvolution on EndΔ(V ) is the adjoint relative to the superform).

(ii) There exists a finite dimensional division algebra with an involution (D,−), a finite di-
mensional left Z2-graded vector space V endowed with a nondegenerate hermitian odd
form h :V × V → D, and an isomorphism of superalgebras with superinvolution ρ :A →
EndD(V ).

Conversely, any such superalgebra is simple and it is endowed with a superinvolution.

Notice that if A is a CSS and it is isomorphic to EndΔ(V ) for some finite dimensional division
superalgebra Δ and a left vector space V over Δ, then the classes of A and Δ in the Brauer–Wall
group coincide.
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3. Superinvolutions of the first kind

In these sections all superantiautomorphisms and all superinvolutions are F -linear.

3.1. The odd case

First of all, we consider the quadratic graded algebras.

Lemma 24. A quadratic graded algebra over a field F has a superantiautomorphism if and only
if −1 is a square in F .

Proof. Let K := F ⊕Fu, u2 = a ∈ F×, δu = 1. We suppose that there is an element s ∈ F with
s2 = −1. For x := α1 + βu ∈ K (α,β ∈ F ) we define σ(x) = α1 + βsu. The induced map σ is
a superantiautomorphism of K .

On the other hand, if σ is a superantiautomorphism, then for all α,β ∈ F we have σ(α1 +
βu) = α1 + βλu. The relation σ(u2) = −σ(u)σ (u) implies that λ2 = −1. �
Lemma 25. Quadratic graded algebras do not posses superinvolutions.

Proof. We take a quadratic algebra K := F ⊕ Fu, u2 = a ∈ F×, δu = 1. If τ were a superin-
volution, then τ(u) = λu for some λ ∈ F×. The fact that τ 2(u) = u would imply that λ = ±1.
Hence a = τ(a) = τ(u2) = −(τ (u))2 = −(λu)2 = −a, a contradiction. �
Remark 26. If a quadratic algebra has a superantiautomorphism ϕ, then ϕ2 = ν, the grading
automorphism.

Now we can solve the case of algebras of odd type.

Theorem 27. Let A be a CSS of odd type over a field F . The algebra A has a superantiautomor-
phism if and only if the following two conditions hold:

1. −1 is a square in F ,
2. the algebra A0 has an antiautomorphism.

Proof. If A has a superantiautomorphism σ , then σ|A0 is an antiautomorphism of A. Moreover,
the restriction σ|Z(A) is a superantiautomorphism on the quadratic graded algebra Z(A). Hence
Lemma 24 implies that −1 is a square in F .

Conversely, if −1 is a square in F then, again by Proposition 24, there is a superantiautomor-
phism σ1 on Z(A). If σ2 is an antiautomorphism of A0, then σ1 ⊗σ2 is a superantiautomorphism
of A � (A0) ⊗ Z(A). �
Theorem 28. Let A be a CSS of odd type. The algebra A does not possess superinvolutions of
the first kind.

Proof. If τ were a superinvolution of A, then τ |Z(A) would be a superinvolution on the quadratic
graded algebra Z(A), a contradiction with Lemma 25. �



A. Elduque, O. Villa / Journal of Algebra 319 (2008) 4338–4359 4351
3.2. The even case

3.2.1. The case Z(A0) � F × F

Let A be a CSS of even type with Z(A0) � F ×F . Then A � Mn+m(F) ⊗̂ (D), for a division
algebra D. If D = F , we are in the case of Proposition 7: if A ∼ Mn+m(F), n,m odd and n �= m

there is a superantiautomorphism but no superinvolution; otherwise A has a superantiautomor-
phism if and only if it has a superinvolution.

It remains to consider the case where D �= F .

Theorem 29. Let D �= F . Then the following assertions are equivalent:

(i) A has a superantiautomorphism
(ii) A has a superinvolution

(iii) D has an involution

Proof. The superalgebra A has a superantiautomorphism if and only if A ⊗̂ A ∼ 1 in BW(F ).
Hence (D) ⊗̂ Mn+m(F) ⊗̂ Mn+m(F) ⊗̂ (D) ∼ 1 in BW(F ), also (D) ⊗̂ (D) ∼ 1 in BW(F ). But
since the grading on D is trivial, this is equivalent with D ⊗ D ∼ 1 in B(F). By the classical
Albert’s Theorem, this is equivalent with the fact that D possess an involution. Hence (i) and (iii)
are equivalent.

To prove that (iii) implies (ii), suppose that σ is an involution on D. Let V := Dn+m. If
e1, . . . , en+m is the canonical basis of Dn+m, we define a grading on V by setting e1, . . . , en ∈
V0 and en+1, . . . , em ∈ V1. Clearly, A � EndD(V ). The fact that D �= F implies that {d ∈ D |
σ(d) = −d} �= {0} (if σ were the identity on D, then the central algebra D would coincide
with F ). Let d ∈ D with σ(d) = −d �= 0. The map h :V × V → D, given by h(ei, ei) = 1 for
all i = 1, . . . , n, h(ej , ej ) = d for all j = n + 1, . . . , n + m, and h(ei, ej ) = 0 for i �= j , defines
a superhermitian form and therefore there is an associated superinvolution (see Corollary 23).
Therefore (iii) implies (ii).

The implication (ii) ⇒ (i) is trivial. �
3.2.2. The case Z(A0) is a field

We study CDS in relation with superinvolutions. We begin with graded quaternion algebras.

Lemma 30. Let Q = 〈a, b〉 be a CDS. Then it has no superinvolution (of the first kind).

Proof. Suppose that A has a superinvolution ∗. Then there is a nonzero element u ∈ Q1 ∩
H(Q,∗) or u ∈ Q1 ∩ S(Q,∗), because the eigenvalues of the linear map ∗ are ±1 (or also:
pick a nonzero element x in Q1; if x /∈ S(Q,∗), then take x + x∗ ∈ H(Q,∗)). Let u2 = λ ∈ F×.
Then λ = u2 = u∗u∗ = −(u2)∗ = −(λ)∗ = −λ, which implies that λ = 0. Hence u2 = 0, a con-
tradiction to the fact that Q is a division superalgebra. �
Lemma 31. Let Δ be a CDS of even type, Δ1 �= 0. Then Δ has no superinvolutions.

Proof. We prove the lemma by induction on the degree (as ungraded algebra) of Δ. The case of
degree 2 is proved in Lemma 30.

Now, suppose that the degree of Δ is greater than 2 and that ∗ is a superinvolution on Δ.
Since the eigenvalues of the linear map ∗ are ±1, there is a nonzero element u ∈ Δ1 ∩ H(Δ,∗)
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or u ∈ Δ1 ∩ S(Δ,∗). Let u2 = a. Then a∗ = (u2)∗ = −(u∗)2 = −a. Hence a /∈ F×. On the other
hand, since au = ua, it follows that a /∈ K := Z(Δ0), because Z(Δ0) = F1 ⊕ Fz and xz = −zx

for all x ∈ Δ1. We define the map σ :Δ0 → Δ0, σ(x) = uxu−1. Clearly, σ 2(x) = axa−1. Let
G := {x ∈ Δ0 | σ(x) = x}. The algebra G is a division subalgebra of Δ0. The field L = Z(G)

contains a and hence it is a proper extension of F . Now we define Δ̃ := CΔ(L), the centralizer
of L in Δ, a proper division superalgebra contained in Δ.

We consider the irreducible representation of superalgebras ρ :Δ ⊗ L → EndF (Δ), d ⊗ l �→
ρ(d ⊗ l), with vρ(d ⊗ l)(v) := lvd for all v ∈ Δ. Applying Jacobson’s density (see Corollary 18),
we have

Δ ⊗ L � End(Δ̃Δ) � Mr(Δ̃).

Therefore L = Z(Δ̃), where Δ̃ is an even CDS over L with degree (as algebra over L) less
than the degree of the F algebra Δ. The map ∗ ⊗ 1 is a superinvolution on the L-superalgebra
Δ ⊗ L. Hence also Mr(Δ̃) has a superinvolution. It follows that the L-superalgebra Δ̃ has a
superinvolution (see Corollary 23(i)), a contradiction with the induction hypothesis. �
Theorem 32. Let A be a CSS of even type and suppose that Z(A0) is a field. Then it possesses
no superinvolution.

Proof. We know that (see Remark 5)

A � (
Mn(F)

) ⊗̂ Δ,

where Δ is a CDS. We observe, again by Corollary 23 that A has a superinvolution if and only if
Δ has a superinvolution. Then the theorem follows immediately from Lemma 31. �
Remark 33. We observe that even if a CSS A of even type where Z(A0) is a field has no
superinvolution, it may have order two in the Brauer–Wall group. For example, if −1 is a square
in F , then every (even) superalgebra of the form

F 〈√a1 〉 ⊗̂ · · · ⊗̂ F 〈√a2r 〉

has an order two in the Brauer–Wall group because of Lemma 24. In particular, if −1 is a square
in F , every division graded quaternion algebra has order two in BW(F ) but has no superinvolu-
tion.

3.3. An example: Clifford algebras

Let (V , q) be a quadratic space over the field F and let C(V,q) denote its Clifford alge-
bra. The Clifford algebra is in a canonical way a superalgebra: it possess the grading inherited
from the grading of the tensor algebra. Moreover, the Clifford algebra is always endowed with a
canonical involution, namely the involution fixing all the elements of V . For more details about
Clifford algebras, see for example [7]. Thanks to our theorems, it is very easy to establish the ex-
istence of superinvolutions on Clifford algebras. It depends only on the dimension of V (denoted
by dimq) and the center of the even part of C(V,q), denoted by Z(C0).
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Corollary 34. Let (V , q) be a quadratic space over the field F . Then:

(i) If dimq is odd, then there exists no superinvolution.
(ii) If dimq is even and Z(C0) is a field, then there exists no superinvolution.

(iii) If dimq is even and Z(C0) � F × F , then there exists a superinvolution.

4. The graded Albert Theorem

In this section we prove a graded version of Albert’s Theorem. Here we have a CSS with
superantiautomorphism and want to construct a superantiautomorphism whose square is the
grading automorphism. Again, all the superantiautomorphisms in this section will be assumed to
be F -linear.

In the first place, we define an invariant which will play an important role in the proof of the
graded Albert Theorem.

Lemma 35. Let A be a CSS of even type and suppose that the class of A has order � 2 in
BW(F ). Let η be a superantiautomorphism of A. Then there is an invertible even element a such
that η2(x) = axa−1 for any x ∈ A. Moreover, aη(a) = η(a)a ∈ F× and the quantity aη(a)F×2 ∈
F×/F×2 does not depend on the choice of η.

Proof. Since η2 is a graded automorphism which fixes elementwise Z(A0), the graded Skolem–
Noether Theorem implies the existence of a homogeneous element a ∈ A0 such that η2(x) =
axa−1 for any x. We remark that aη(a) ∈ F×: this follows directly from the relation η(η2(x)) =
η3(x) = η2(η(x)) valid for every x ∈ A. Since η2 fixes F , it follows that aη(a) = η(a)a ∈ F×.

Now, let ξ be another superantiautomorphism of A. Then there is a homogeneous ele-
ment b ∈ A× such that for all x ∈ A we have ξ(x) = (−1)bxbη(x)b−1. A computation shows
that ξ2(x) = bη(b)−1axa−1η(b)b−1. Let c := bη(b)−1a. Then cξ(c) = aη(a). This number is
uniquely determined modulo squares because a is uniquely determined up to a nonzero scalar
in F . �
Remark 36. In the ungraded case, A is a central simple F -algebra with involution of the first
kind if and only if for any antiautomorphism σ of A (with σ 2 = ιa) we have σ(a)a ∈ F×2 (see
[12, p. 306]).

Lemma 37. Let Δ be a CDS of even type, Δ1 �= 0, and assume that the class of Δ has order � 2
in BW(F ). Then Δ has a superantiautomorphism ϕ such that ϕ2 = ν, the grading automorphism.

Proof. Let η be a superantiautomorphism of Δ and η2(x) = axa−1, a ∈ Δ0. Now, let Z(Δ0) =
F ⊕ Fz, z2 = f ∈ F× with f /∈ F×2 and ν(x) = z−1xz. Moreover, we have uz = −zu for all
u ∈ Δ1.

We may assume that η|Z(Δ0) = id|Z(Δ0) (we know that η(z) = ±z: if η(z) = −z, we pick a
nonzero element u ∈ Δ1 and define the superantiautomorphism η′ by η′ := ιu ◦η, then η′(z) = z).

The map η|Δ0 is a Z(Δ0)-linear antiautomorphism, hence by the classical Albert’s Theorem
Δ0 has an involution. From Remark 36 it follows that aη(a) ∈ Z(Δ0)

×2.
Let λ ∈ Z(Δ0)

× be such that aη(a) = λ2.
We may assume that a ∈ Z(Δ0)

×. In fact, if a /∈ Z(Δ0)
×, then 1 + λ−1a �= 0. We define

ξ = ι(1+λ−1a)−1 ◦ η. Clearly, ξ |Z(Δ ) = id|Z(Δ ) and
0 0
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ξ2 = ι(1+λ−1a)−1 ◦ η ◦ ι(1+λ−1a)−1 ◦ η

= ι(1+λ−1a)−1 ◦ ιη(1+λ−1a) ◦ η2

= ι(1+λ−1a)−1η(1+λ−1a)a

= ι(1+λ−1a)−1(a+λ−1η(a)a)

= ι(1+λ−1a)−1(a+λ)

= ιλ

with λ ∈ Z(Δ0)
×, as desired.

Since a ∈ Z(Δ0)
× and η|Z(Δ0) = id|Z(Δ0), we have aη(a) = a2 ∈ F×. Hence a ∈ F× or

a ∈ F×z. But if a ∈ F×, then η2 = id, so it would be a superinvolution, and this contradicts
Lemma 31. It follows that a ∈ F×z. Therefore η2 = ιz = ν, as desired. �
Theorem 38 (Graded Albert Theorem). Let A be a CSS which possesses a superantiautomor-
phism. Then A has also a superantiautomorphism ϕ such that ϕ2 = ν, the grading automor-
phism.

Proof. If A is odd, the existence of a superantiautomorphism implies that the algebra A0 has
an involution σ and that

√−1 ∈ F . Since
√−1 ∈ F , then the quadratic graded algebra Z(A)

has a superantiautomorphism s with s2 = ν (see Remark 26). Hence the odd superalgebra A �
(A0) ⊗̂ Z(A) has the superantiautomorphism given by ϕ = σ ⊗ s such that ϕ2 = ν.

We follow the description of even CSS given in Remark 5.
If A is even and A � Mr+s(F )⊗̂(D), then D has an involution σ and Mr+s(F ) has a superan-

tiautomorphism ε with ε2 = ν (see Proposition 7). Hence the superantiautomorphism ϕ = ε ⊗ σ

has the property ϕ2 = ν.
Finally, if A is even and A � (Mn(F )) ⊗̂ Δ, we apply Lemma 37 to Δ to get a superantiauto-

morphism ε with ε2 = ν. Tensoring ε with the transpose, we get ϕ := t ⊗ ε with ϕ2 = ν. �
Corollary 39. Let A be an even CSS which possesses a superantiautomorphism η with η2 = ιa .
Then Z(A0) � F(

√
η(a)a ).

Proof. By Lemma 35 and Theorem 38 and the proof of Lemma 37 we may assume that η2 =
ν = ιz, with Z(Δ0) = F ⊕ Fz, z2 = f ∈ F× with f /∈ F×2 and η(z) = z. Then η(z)z = z2 = f ,
and the result follows. �
5. Superinvolutions of the second kind

The situation for superinvolutions of the second kind, in contrast with the case of superin-
volutions of the first kind, is analogous to the ungraded case in the sense that we can define
a corestriction and prove that a superinvolution of the second kind exists if and only if the
corestriction is trivial (the graded Albert–Riehm Theorem). It is also interesting to observe that
superantiautomorphisms whose square is the grading automorphism do not always exist if the
corestriction is trivial.

We consider a CSS A over a separable quadratic field extension K = F(θ) with Galois group
Gal(K/F) = {1, j} and θ2 ∈ F \ F 2, θ̄ := j (θ) = −θ .
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A K/F -superantiautomorphism ξ of A is a superantiautomorphism which is K/F -semilinear,
i.e. ξ(λx) = λ̄ξ(x) for all λ ∈ K , x ∈ A. Accordingly, a K/F -superantiautomorphism ξ is called
K/F -superinvolution if ξ2(x) = x for all x ∈ A.

Example 40. Let A := Mn+m(K), K = F(θ). Then the CSS A has always a superinvolution of
the second kind, namely the superinvolution adjoint to the hermitian superform on Kn+m given
by the diagonal matrix diag(1, . . . ,1, θ, . . . , θ).

Let Ā be the superalgebra which is identical with As as ring but with the action of K twisted
by j . Let T := A⊗̂Ā. We remark that T is an even CSS over K . We consider the map π :T → T ,
defined in the following way: for all homogeneous elements p ∈ A and q ∈ Ā we have p ⊗ q �→
(−1)pqq ⊗ p. We now define

corK/F (A) = {
x ∈ T

∣∣ π(x) = x
}
.

Since T = corK/F (A) + θ corK/F (A) � corK/F (A) ⊗F K , we conclude that corK/F (A) is an
even CSS over F . Of course, if A = A0, the corestriction corK/F (A) coincides with the usual
ungraded corestriction (see [12, p. 308]).

Example 41. The corestriction of the quadratic graded algebra A := K〈√μ 〉 (recall that
K〈√μ 〉 = K ⊕ Ku with the relation u2 = μ and the grading δu = 1) is the linear hull of the
set {1 ⊗̂ 1, θu ⊗̂u,u ⊗̂ 1 + 1 ⊗̂u, θu ⊗̂ 1 − 1 ⊗̂ θu}. Since corK/F (A)⊗F K � A ⊗̂K Ā, which is
a graded quaternion algebra over K , then corK/F (A) is a graded quaternion algebra over F . Here,
corK/F (A)0 is the linear hull of {1 ⊗̂ 1, θu ⊗̂ u}. Now (θu ⊗̂ u)2 = −(θu)2 ⊗̂ u2 = −θ2μ ⊗̂ μ =
−θ2μμ̄(1 ⊗̂ 1) = NK/F (θμ)(1 ⊗̂ 1). Hence corK/F (A)0 � F [√NK/F (θμ) ].

The next step is the definition of a (right) corK/F (A)-module structure on A when A possesses
a K/F -superantiautomorphism.

In particular, if ξ is a K/F -superantiautomorphism, then we define a right action of T on A:

Ξ :T → EndK(A),

given by

x · (p ⊗ q) = x(p ⊗ q)Ξ := (−1)pxξ(p)xq

for all homogeneous p ∈ A, q ∈ Ā and x ∈ A. The map Ξ is an isomorphism (because T is a
CSS and by dimension count).

We will often use the equivalences A has a K/F -superantiautomorphism ⇔ the K-CSSs Ā

and As are isomorphic ⇔ T � EndK(A) ∼ 1 in BW(F ).
Now A is an irreducible (right) T -module. Since

corK/F (A) ↪→ T � EndK(A) ↪→ EndF (A),

we have a (right) corK/F (A)-module structure on A.
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Lemma 42. Let A be a CSS over K with a K/F -superantiautomorphism ξ . Let C :=
EndcorK/F (A)(A). Then corK/F (A) ∼ C in BW(F ) and dimF C = 4, K ⊆ C0. Moreover,
corK/F (A) ∼ 1 if and only if A is not irreducible as corK/F (A)-module.

Proof. The fact that K ⊆ C0 follows immediately from corK/F (A) ⊆ T � EndK(A).
First, we suppose that there exists a nontrivial proper irreducible corK/F (A)-submodule

of A. Let V �= 0 be an irreducible corK/F (A)-submodule of A with V �= A. Then KV :=
V ⊕ θV is a K ⊗F corK/F (A) � T -submodule, hence KV = A. By dimension count,
corK/F (A) � EndF (V ). Therefore A � V ⊕V (as corK/F (A)-module). Hence we conclude that
EndcorK/F (A)(A) is a trivially graded split quaternion algebra. This implies that corK/F (A) ∼ 1
in BW(F ). Now, let A be an irreducible corK/F (A)-module. Then, by Schur’s Lemma, C is
a CDS and by Jacobson density we have that corK/F (A) = EndC(A). Since (dimK A)2 =
dimF corK/F (A) = dimF EndC(A) = (dimC A)2 dimF C, we have that dimF C = ( dimK A

dimC A
)2 =

(dimK C)2. This equation and the observation that dimF C = (dimK C)(dimF K) = 2 dimK C

imply that dimK C = 2 and hence dimF C = 4. We remark that if C1 �= 0, then K = C0. �
Lemma 43. Let A be a CSS over K with a K/F -superantiautomorphism ξ . Then one and only
one of the following cases occurs:

(i) Either ξ2 = ιb , with b ∈ A×
0 . In this case corK/F (A) ∼ Q in BW(F ), where Q = Q0 =

K ⊕ Ku is a quaternion algebra with u2 = ξ(b)b ∈ F× and uα = ᾱu for any α ∈ K ,
(ii) or ξ2 = ιb , with b ∈ A×

1 . In this case corK/F (A) ∼ H in BW(F ), with H a quaternion CDS
and H0 = K .

Proof. The dichotomy is given by the observation that ξ2 is a graded automorphism and the
Skolem–Noether Theorem. Recall from Lemma 42 that A is a right module for corK/F (A),
and thus the action of the centralizer C := EndcorK/F (A)(A) will be written on the left. Also, K

is a subalgebra of C0, and the action (by scalar multiplication) of any element α ∈ K will be
denoted by lα : lα(a) = αa for any a ∈ A. To prove the lemma it is sufficient to compute C (see
Lemma 42). We already know that C is either a quaternion CDS or a quaternion algebra with
trivial grading.

Let ξ2 = ιb , with b ∈ A×
0 � A×

1 . Note first that for any homogeneous x ∈ A, ξ3(x) =
ξ(ξ2(x)) = ξ((−1)bxbxb−1) = (−1)bxξ(b)−1ξ(x)ξ(b), but also ξ3(x) = ξ2(ξ(x)) =
(−1)bxbξ(x)b−1. Thus ξ(b)b is an even element in Z(A) = K , and it is fixed by ξ , so
ξ(b)b ∈ F×.

Consider the F -linear map f : A → A given by f (x) = (−1)xbξ(x)b for any homogeneous
x ∈ A. The map f is even or odd, according to b being even or odd. For any α ∈ K and x ∈ A,

f ◦ lα(x) = f
(
α(x)

) = ᾱf (x) = lᾱ ◦ f (x),

and

f 2(x) = ξ
(
ξ(x)b

)
b = (−1)bxξ(b)ξ2(x)b = ξ(b)bxb−1b = ξ(b)bx,

so f 2 = lξ(b)b and the algebra over F generated by K and f (a subalgebra of EndF (A)) is
K ⊕ Kf , which is a quaternion (ungraded) algebra if b is even, or a quaternion superalgebra
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with even part K if b is odd. It remains to be shown that f lies in the centralizer C. For any
homogeneous elements x,p, q ∈ A,

f
(
x · (p ⊗ q + (−1)pqq ⊗ p

))
= f

(
(−1)pxξ(p)xq + (−1)(p+x)qξ(q)xp

)
= (−1)(p+x+q)b

(
(−1)pxξ

(
ξ(p)xq

)
b + (−1)(p+x)qξ

(
ξ(q)xp

)
b
)

= (−1)(p+x+q)b
(
(−1)(p+x)qξ(q)ξ(x)ξ2(p)b + (−1)pxξ(p)ξ(x)ξ2(q)b

)
= (−1)(p+x+q)b

(
(−1)(p+x)q(−1)pbξ(q)ξ(x)bp + (−1)px(−1)qbξ(p)ξ(x)bq

)
= (−1)p(x+b)ξ(p)

(
(−1)xbξ(x)b

)
q + (−1)q(p+x+b)ξ(q)

(
(−1)xbξ(x)b

)
p

= f (x) · (p ⊗ q + (−1)pqq ⊗ p
)
.

Since the elements p ⊗ q + (−1)pqq ⊗ p span corK/F (A), we conclude that f is in the central-
izer C, as required. �
Theorem 44 (Graded Albert–Riehm Theorem). Let K/F be a quadratic field extension. Let A

be a CSS over K . Then A has a K/F -superinvolution if and only if corK/F (A) ∼ 1 in BW(F ).

Proof. First, we assume that ξ is a K/F -superinvolution on A. Clearly, ξ2 = ι1. By Lemma 43,
corK/F (A) ∼ Q, with Q = K ⊕ Ku, u2 = ξ(1)1 = 1, Q = Q0. But Q is split, hence
corK/F (A) ∼ 1 in BW(F ).

To prove the second implication, we suppose that corK/F (A) ∼ 1 in BW(F ). Then K ⊗
corK/F (A) � T ∼ 1 in BW(K). Hence Ā � As .

We know (see Theorem 4 and Remark 5) that either A is even and there is a central division
K-algebra D such that A � Mn+m(K) ⊗̂ (D) (case I) or there exists a K-CDS Δ (even if A is
even, odd otherwise) such that A � (Mn(K)) ⊗̂ Δ (case II).

We remark that the CSSs Mn+m(K) and (Mn(K)) have a K/F -superinvolution. Hence, by
the first implication, they have trivial corestriction.

We consider case I. If A � Mn+m(K) ⊗̂ (D), then (see [12, p. 310])

corK/F (A) � corK/F

(
Mn+m(K)

) ⊗̂ corK/F

(
(D)

)
.

Hence in case I we have corK/F ((D)) ∼ 1 in BW(F ) and since the grading of D is trivial the
classical Albert–Riehm Theorem implies that D has an involution of the second kind.

To conclude the proof, we have to study case II. As in case one, we obtain that corK/F (Δ) ∼ 1
in BW(F ). Let ξ be a K/F -superantiautomorphism of Δ (it exists because if corK/F (Δ) ∼ 1
then Δ̄ � Δs ). Since corK/F (Δ) ∼ 1, Lemma 43 forces ξ2 = ιb , with b ∈ A×

0 . Moreover, we
may suppose that ξ(b)b = 1 (because the fact that corK/F (Δ) ∼ Q ∼ 1 implies that there is an
element λ ∈ K such that λλ̄ = ξ(b)b and we may change b with λ−1b). If b = −1, we have
finished the proof. If b �= −1, then the map η = ι(1+b)−1 ◦ ξ is a superinvolution. �
Example 45. We consider the quadratic graded algebra A := K〈√μ 〉 (with K〈√μ 〉 = K ⊕
Ku with the relation u2 = μ and the grading δu = 1). We have computed the corestriction in
Example 41: we know that corK/F (A) ∼ 1 in BW(F ) if and only if NK/F (θμ) is a square in F .
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This condition is equivalent with the existence of an odd element v such that v2 ∈ F×θ (or
equivalently, to the existence of an element α ∈ K× such that α2μ ∈ F×θ ). In fact, if α2μ = γ θ ,
γ ∈ F×, then NK/F (θμ) = NK/F (α−2γ θ2) = NK/F (α−1)2(γ θ2)2 ∈ F×2. On the other hand,
if NK/F (θμ) = γ 2, γ ∈ F× we have NK/F (γ −1θμ) = 1 and by Hilbert 90 there is an element
δ ∈ K× with γ −1θμ = δδ̄−1. Hence δ̄2μ = (γ θ−2δδ̄)θ ∈ F×θ .

Remark 46. The preceding result can also be proved directly.

Proposition 47. The CSS A = K〈√μ 〉 has a K/F -superinvolution if and only if there is an
element v ∈ A1 such that v2 ∈ F×θ .

Proof. Let ∗ be a K/F -superinvolution and K〈√μ 〉 = K ⊕ Ku. Since the eigenvalues of ∗ are
±1, we may assume u∗ = ±u. Then μ∗ = (u2)∗ = −u∗u∗ = −μ. Hence μ ∈ F×θ . Conversely,
if there is an element v ∈ A1 such that v2 ∈ F×θ , then the map ∗ :x + yv �→ x̄ + ȳv (x, y ∈ K)
defines a K/F -superinvolution of A. �

For CSSs of odd type there is a criterion for the existence of superinvolutions of the second
kind which is easier than the general one in terms of corestriction.

Proposition 48. Let A be a CSS of odd type over K . Then A has a K/F -superinvolution if and
only if the following two conditions are satisfied:

(i) The CSS Z(A) has a K/F -superinvolution.
(ii) The central simple algebra A0 has an involution of the second kind.

Proof. We give two different proofs: one using Theorem 44 and a direct proof. First, we give the
proof using Theorem 44, which shows how the proposition is related to the general result.

If Z(A) has a K/F -superinvolution and A0 has an involution of the second kind, then
corK/F (Z(A)) ∼ 1 and corK/F (A0) ∼ 1. Hence

corK/F (A) � corK/F

(
Z(A)

) ⊗̂ corK/F (A0) ∼ 1,

as desired. Conversely, suppose that corK/F (A) ∼ 1. We know (see Lemma 43 and Proposi-
tion 47) that corK/F (A0) ∼ Q, a quaternion algebra with Q = Q0, K ⊆ Q and
corK/F (Z(A)) ∼ H , a graded quaternion algebra. We have only two possibilities: either Q ∼ 1
and H ∼ 1 or Q is a division algebra and H � Qs = Qop . This last case cannot occur, because
H1 �= 0 = Q

op

1 . Hence we conclude that corK/F (A) ∼ 1 if and only if corK/F (Z(A)) ∼ 1 and
corK/F (A0) ∼ 1.

Now we give an easier direct proof.
Clearly, if the Z(A) has a K/F -superinvolution τ1 and the central simple algebra A0 has an

involution τ2 of the second kind, then τ1 ⊗ τ2 is a K/F -superinvolution on A = Z(A) ⊗̂ A0. On
the other hand, if τ is a K/F -superinvolution on A, then τ|A0 is an involution of the second kind
on A0 and τ|Z(A) is a K/F -superinvolution on Z(A). �
Example 49. The existence of a superinvolution does not imply the existence of a superanti-
automorphism whose square is the grading automorphism. For example, consider the quadratic
graded algebra K〈√i〉 = K ⊕ Ku with K = Q(i), i2 = −1. Clearly, it has a superinvolution.
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But suppose that ϕ is a graded superantiautomorphism with ϕ2 = ν. Then ϕ2(u) = −u. On the
other hand, there is a λ ∈ K such that ϕ(u) = λu. Hence −u = ϕ2(u) = ϕ(λu) = λ̄λu. But the
equation λ̄λ = −1 has no solution in K , a contradiction to the existence of ϕ.

Example 50. We give an example of even CSS with superinvolution but with no superantiau-
tomorphism whose square is the grading automorphism. Let F = Q, K = F(i), i2 = −1 and
A = K〈√i〉 ⊗̂ K〈√3i〉. The CSS A has a superinvolution (and hence corK/F (A) ∼ 1), because
K〈√i〉 and K〈√3i〉 possess a superinvolution. Here A0 = K1 ⊕ Kz with z2 = 3. Now, sup-
pose that ϕ is a graded superantiautomorphism with ϕ2 = ν. Then ϕ2 = ιz and ϕ(z) ∈ A0 and
ϕ(z)2 = ϕ(z2) = 3. Moreover, ϕ(z) = ±z. We know (see Lemma 43) that corK/F (A) ∼ K ⊕Kf

with f 2 = ϕ(z)z = ±z2 = ±3. But ±3 /∈ NK/F (K), hence K ⊕ Kf is a division algebra, a
contradiction with corK/F (A) ∼ 1.
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