Identification of muscle innervation zones using linear electrode arrays: a fundamental step to measure fibers conduction velocity

Beretta Piccoli, Matteo and Cescon, Corrado and Barbero, Marco and D'Antona, Giuseppe (2021) Identification of muscle innervation zones using linear electrode arrays: a fundamental step to measure fibers conduction velocity. Arab Journal of Basic and Applied Sciences.

[img] Text
BerettaPiccoli(2021c).pdf

Download (2MB)

Abstract

Fiber conduction velocity (CV) is a parameter correlated to the physiological membrane properties of the skeletal muscle fibers. Changes in muscle fiber CV are correlated to the gradation of force and fatigue, and can be measured by means of surface electromyography EMG (sEMG). sEMG measurement of CV during muscle contractions requires the correct identification of the skeletal muscle innervation zone (IZ). In superficial muscles, IZ location can be detected using linear electrode arrays and visually identified as the point of inversion of the detected motor unit action potential (MUAP) propagation. In the present work, we present a method for the effective and fast detection of the IZ location, through the following procedures: (1) identification of the target superficial muscle considering the muscle fiber architecture; (2) electrode array selection based on interelectrode distance and number of electrodes; (3) subject training to perform submaximal isometric contractions of the target muscle/s; (4) electrode array positioning along the muscle surface to investigate the IZ position during the contractions by visual identification of MUAP patterns.

Actions (login required)

View Item View Item