Convective heat transfer in cellular ceramic: A 3D numerical solution

Ortona, Alberto and Ferrari, Luca and Barbato, Maurizio and D'Angelo, Claudio (2014) Convective heat transfer in cellular ceramic: A 3D numerical solution. International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics.

Full text not available from this repository.


In this work, three-dimensional thermo fluid dynamics analyses were performed in order to evaluate the convective heat transfer coefficient for cellular ceramics, both random (i.e. foams) and regular (i.e. lattices). The study aimed at evaluating the heat exchange performance of cellular ceramics with the scope of engineering their morphology in order to maximize the ratio between heat exchange and pressure drop. Performed simulations focus on capturing the relevance of cell morphology on thermal convection and pressure drop of cellular ceramics within a porosity range of 75–90% and at different fluid velocities. Computational analyses were performed with the commercial CFD package ANSYS-Fluent. Results show that parameters affecting most the pressure drop are porosity and cell aspect ratio; on the other hand, the thermal convective coefficient is strongly dependent on surface area, which, in turn, is directly related to cell morphology.

Actions (login required)

View Item View Item