Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 1–2, pp 29–43 | Cite as

Tensile and compressive behaviour of S355 mild steel in a wide range of strain rates

  • Ezio Cadoni
  • Daniele Forni
  • Roman Gieleta
  • Leopold Kruszka
Open Access
Regular Article
  • 30 Downloads
Part of the following topical collections:
  1. Advances in the Characterization, Modeling and Simulation of Materials Subjected to High Strain Rates

Abstract

This paper presents a comparison between mechanical compressive and tensile properties of S355 structural (mild) steel in a wide range of strain rates. A split Hopkinson pressure bar apparatus is used to investigate the dynamic compressive behaviour at high strain rates (740–5880 s−1). A hydro-pneumatic machine (5–25 s−1) and a modified split Hopkinson tensile bar apparatus (300–850 s−1) are used to study the strain rate sensitivity under dynamic tension. Quasi-static tensile and compressive tests are conducted on a universal electromechanical testing machine. The model parameters of two commonly used constitutive equations (Johnson–Cook and Cowper–Symonds) are also compared, separately for each model during compression and tension deformations.

References

  1. 1.
    N.K. Singh, E. Cadoni, M.K. Singha, N.K. Gupta, J. Eng. Mech. 139, 1197 (2013) CrossRefGoogle Scholar
  2. 2.
    M. Singh, D. Sood, R.K. Gupta, P C. Gautam, B. Sewak, A.C. Sharma, M. Thomson, Def. Sci. J. 58, 275 (2008) CrossRefGoogle Scholar
  3. 3.
    J. Ribeiro, A. Santiago, C. Rigueiro, in Proceedings of the XIV Portuguese Conference on Fracture, PCF2014, edited by A. de Jesus, A. Ribeiro, J. Morais, J. Xavier, N. Dourado (University of Trás-os-Montes e Alto Douro, 2014) Google Scholar
  4. 4.
    J. Ribeiro, A. Santiago, C. Rigueiro, IJSI 7, 323 (2016) Google Scholar
  5. 5.
    D. Forni, B. Chiaia, E. Cadoni, Eng. Struct. 119, 164 (2016) CrossRefGoogle Scholar
  6. 6.
    D. Forni, B. Chiaia, E. Cadoni, in Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS2016, edited by M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (Institute of Structural Analysis and Antiseismic Research, Greece, 2016), p. 4920 Google Scholar
  7. 7.
    W. Chen, B. Song, Split Hopkinson (Kolsky) bar: design, testing and applications (Springer, Berlin, 2011) Google Scholar
  8. 8.
    E. Cadoni, M. Dotta, D. Forni, S. Bianchi, Appl. Mech. Mater. 82, 124 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    E. Cadoni, M. Dotta, D. Forni, N. Tesio, Appl. Mech. Mater. 82, 86 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    E. Cadoni, M. Dotta, D. Forni, P. Spatig, J. Nucl. Mater. 414, 360 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    P. Addison, The illustrated wavelet transform handbook (Taylor & Francis, New York, 2002) Google Scholar
  12. 12.
    C.S. Burrus, R.A. Gopinath, H. Guo, Introduction to wavelets and wavelet transforms: a prime (Prentice Hall, New Jersey, 1998) Google Scholar
  13. 13.
    I. Daubechies, Ten lectures on wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1992) Google Scholar
  14. 14.
    S. Mallat, A wavelet tour of signal processing: the sparse way (Academic Press, Elsevier, 2009) Google Scholar
  15. 15.
    J.S. Walker, A primer on wavelets and their scientific applications (Chapman & Hall/CRC, Taylor & Francis Group, 2008) Google Scholar
  16. 16.
    D.L. Fugal, Conceptual wavelets in digital signal processing: an in-depth practical approach for the non-mathematician (Space and Signals Technical Publishing, San Diego, California, 2009) Google Scholar
  17. 17.
    G. Strang, T. Nguyen, Wavelets and filter banks (Wellesley-Cambridge Press, Wellesley, USA, 1997) Google Scholar
  18. 18.
    W.N. Sharpe, Springer handbook of experimental solid mechanics (Springer, Berlin, 2008) Google Scholar
  19. 19.
    P. Bridgman, Studies in large plastic flow and fracture (McGraw-Hill, New York, 1952) Google Scholar
  20. 20.
    G.J. Cowper, P.S. Symonds, Report, Brown University, Division of Applied Mathematics, 1957 Google Scholar
  21. 21.
    G.R. Johnson, W.H. Cook, in Proceedings of the Seventh International Symposium on Ballistics, The Hague, 1983 (American Defense Preparedness Association, Koninklijk Instituut van Ingenieurs, Netherlands, 1983), p. 541 Google Scholar
  22. 22.
    L. Kruszka, W.K. Nowacki, J. Therm. Stress. 18, 313 (1995) CrossRefGoogle Scholar
  23. 23.
    R. Kapoor, S. Nemat-Nasser, Mech. Mater. 27, 1 (1998) CrossRefGoogle Scholar
  24. 24.
    J.P. Castellanos, A. Rusinek, J. Theor. Appl. Mech. 50, 337 (2012) Google Scholar

Copyright information

© The Author(s) 2018

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Ezio Cadoni
    • 1
  • Daniele Forni
    • 1
  • Roman Gieleta
    • 2
  • Leopold Kruszka
    • 3
  1. 1.DynaMat Lab, University of Applied Sciences of Southern SwitzerlandCanobbioSwitzerland
  2. 2.Department of Mechanics and Applied Computer ScienceFaculty of Mechanical Engineering, Military University of TechnologyWarsawPoland
  3. 3.Faculty of Civil Engineering and Geodesy, Military University of TechnologyWarsawPoland

Personalised recommendations