Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 1–2, pp 179–199 | Cite as

High strain rates testing and constitutive modeling of B500B reinforcing steel at elevated temperatures

  • Ezio Cadoni
  • Mario Fontana
  • Daniele Forni
  • Markus Knobloch
Regular Article
  • 12 Downloads
Part of the following topical collections:
  1. Advances in the Characterization, Modeling and Simulation of Materials Subjected to High Strain Rates

Abstract

Understanding the response of the building materials under extreme condition of loading (blast and impact events) and temperature (fire) is fundamental for civil engineers to design safe structures for civil or defense applications. In this paper an experimental investigation on the influence of the combined effects of high strain rate and elevated temperature on the mechanical properties of B500B reinforcing steel in tension is presented. The quasi-static tensile tests have been performed at temperatures of 20 °C, 200 °C, 400 °C and 600 °C under steady-state conditions at ETH Zurich, using a closed-loop strain rate control system. The mechanical characterization at high strain rate has been performed by means of a Split Hopkinson Tensile Bar installed at the DynaMat Laboratory (SUPSI). In order to evaluate the extreme combined effect of dynamic loadings and elevated temperatures a water-cooled induction heating system was used. The tensile stress-strain response of B500B steel is found to depend strongly on both the applied strain rate and the test temperature. Dynamic tests at room temperature highlight an increase of strength and strain capacities. At high strain rate the increase of the temperature causes a decrease of strength, strain and energy absorbed in the plastic deformation. The strain hardening rate of this material is analysed as a function of strain rate and temperature. Two widely used constitutive laws (Johnson-Cook and Cowper-Symonds) have been calibrated. Numerical and experimental results have been compared. This research provides new data that starts to cover the lack of information about this widely used reinforcing steel in reinforced concrete structures. The degradation factors of different mechanical properties of B500B steel can be used by the designer in case of multi-hazard scenario, such as fire followed by an explosion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Mirmomeni, A. Heidarpour, X.L. Zhao, C.R. Hutchinson, J.A. Packer, C. Wu, Int. J. Impact Eng. 76, 178 (2015) CrossRefGoogle Scholar
  2. 2.
    M. Mirmomeni, A. Heidarpour, X.L. Zhao, C.R. Hutchinson, J.A. Packer, C. Wu, Constr. Build. Mater. 122, 760 (2016) CrossRefGoogle Scholar
  3. 3.
    E. Cadoni, M. Dotta, D. Forni, Key Eng. 711, 791 (2016) CrossRefGoogle Scholar
  4. 4.
    D. Forni, B. Chiaia, E. Cadoni Mater. Des. 94, 467 (2016) CrossRefGoogle Scholar
  5. 5.
    D. Forni, B. Chiaia, E. Cadoni, Eng. Struct. 119, 164 (2016) CrossRefGoogle Scholar
  6. 6.
    D. Forni, B. Chiaia, E. Cadoni, J. Constr. Steel Res. 136, 1 (2017) CrossRefGoogle Scholar
  7. 7.
    V. Kumar, U.K. Sharma, B. Singh, P. Bhargava, Constr. Build. Mater. 46, 19 (2013) CrossRefGoogle Scholar
  8. 8.
    J.C. Dotreppe, Mater. Struct. 30, 430 (1997) CrossRefGoogle Scholar
  9. 9.
    Y. Cao, J. Ahlström, B. Karlsson, J. Mater. Res. Technol. 4, 68 (2015) CrossRefGoogle Scholar
  10. 10.
    R. Felicetti, P.G. Gambarova, A. Meda, Constr. Build. Mater. 23, 3546 (2009) CrossRefGoogle Scholar
  11. 11.
    L.M. Dougherty, E.K. Cerreta, G.T. Gray III, C.P. Trujillo, M.F. Lopez, K.S. Vecchio, G.J. Kusinski, Metall. Mater. Trans. 40A (2009) 1835 CrossRefGoogle Scholar
  12. 12.
    F. Lin, Y. Dong, X. Kuang, L. Lu, Materials 9, 1013 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    D. Asprone, E. Cadoni, A. Prota, ACI Struct. J. 106, 523 (2009) Google Scholar
  14. 14.
    E. Cadoni, D. Forni, EPJ Web Conf. 94, 01004 (2015) CrossRefGoogle Scholar
  15. 15.
    E. Cadoni, M. Dotta, D. Forni, N. Tesio, Appl. Mech. Mater. 82, 86 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    E. Cadoni, D. Forni, High strain rate behaviour in tension of different reinforcing steels, in Response of structures under extreme loading, edited by V. Kodur, N. Banthia (DEStech Publications, 2015), p. 258 Google Scholar
  17. 17.
    S. Hong, T.H.-K. Kang, Struct. J. 113, 983 (2016) Google Scholar
  18. 18.
    CEB, Concrete structures under impact and impulsive loading (1988) Google Scholar
  19. 19.
    FIB, Model code for concrete structures 2010 (Wiley, 2012) Google Scholar
  20. 20.
    L.J. Malvar, ACI Mater. J. 95, 609 (1998) Google Scholar
  21. 21.
    E. Cadoni, M. Dotta, D. Forni, N. Tesio, Mater. Struct. 48, 1803 (2015) CrossRefGoogle Scholar
  22. 22.
    E. Cadoni, M. Dotta, D. Forni, N. Tesio, C. Albertini, Mater. Des. 49, 657 (2013) CrossRefGoogle Scholar
  23. 23.
    G. Riganti, E. Cadoni, Mater. Des. 57, 156 (2014) CrossRefGoogle Scholar
  24. 24.
    E. Cadoni, L. Fenu, D. Forni, Constr. Build. Mater. 35, 399 (2012) CrossRefGoogle Scholar
  25. 25.
    T. Zhong, W. Xing-Qiang, U. Brian, J. Mater. Civ. Eng. 25, 1306 (2015) Google Scholar
  26. 26.
    A.Y. Elghazouli, K.A. Cashell, B.A. Izzuddin, Fire Saf. J. 44, 909 (2009) CrossRefGoogle Scholar
  27. 27.
    EN10080, Steel for the reinforcement of concrete – weldable reinforcing steel – general, European Standard Google Scholar
  28. 28.
    ISO15630-1:2010, Steel for the reinforcement and prestressing of concrete – test methods, International Standard Google Scholar
  29. 29.
    Eurocode 2, Design of concrete structures. Part 1-1: General rules and rules for buildings (2004) Google Scholar
  30. 30.
    B. Hopkinson, Philos. Trans. R. Soc. Lond. A 213, 437 (1914) ADSCrossRefGoogle Scholar
  31. 31.
    R.M. Davies, Philos. Trans. R. Soc. Lond. A 240, 375 (1948) ADSCrossRefGoogle Scholar
  32. 32.
    H. Kolsky, Proc. Phys. Soc. Sect. B 62, 676 (1949) ADSCrossRefGoogle Scholar
  33. 33.
    C. Albertini, M. Montagnani, Inst. Phys. Conf. Ser. 21, 22 (1974) Google Scholar
  34. 34.
    C. Albertini, M. Montagnani, Nucl. Eng. Des. 37, 115 (1976) CrossRefGoogle Scholar
  35. 35.
    E. Orowan, Proc. Phys. Soc. 52, 8 (1940) ADSCrossRefGoogle Scholar
  36. 36.
    K. Marsh, J. Campbell, J. Mech. Phys. Sol. 11, 49 (1963) CrossRefGoogle Scholar
  37. 37.
    J. Campbell, Mater. Sci. Eng. 12, 3 (1973) CrossRefGoogle Scholar
  38. 38.
    J.D. Campbell, W.G. Ferguson, Philos. Mag. 21, 63 (1970) ADSCrossRefGoogle Scholar
  39. 39.
    J. Harding, Met. Technol. 21, 6 (1977) CrossRefGoogle Scholar
  40. 40.
    P. Bridgman, Studies in large plastic flow and fracture (McGraw-Hill, 1952) Google Scholar
  41. 41.
    G. Johnson, W. Cook, Eng. Fract. Mech. 21, 31 (1985) CrossRefGoogle Scholar
  42. 42.
    G.R. Cowper, P. Symonds, Strain-hardening and strain-rate effects in the impact loading of cantilever beams, Technical report No. 28, Brown University Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DynaMat Laboratory – University of Applied Sciences of Southern SwitzerlandCanobbioSwitzerland
  2. 2.Institute of Structural Engineering, ETH ZurichZurichSwitzerland
  3. 3.Institute of Steel, Lightweight and Composite Structures, Ruhr-Universität BochumBochumGermany

Personalised recommendations