RELIABILITY OF HELICAL AXIS PARAMETERS DURING GLENOHUMERAL ROTATION

Corrado Cescon 1, Marco Conti 2, Francesco Bozzetti 1, Filippo Ghirlanda 1, Marco Barbero 1

1 Rehabilitation Research Laboratory 2Lab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland, SUPSI, Manno, Switzerland. 2 MedSport Sports Medicine, Como, Italy

BACKGROUND AND AIM
Shoulder instability (SI) is a common pathology defined as symptomatic laxity of the glenohumeral joint. The SI diagnosis is based in history and physical examination that included specific provocative tests. There is currently lack of diagnostic procedures aimed to quantify the shoulder arthrokinematics. The aim of this study was to evaluate the reliability of finite helical axis (FHA) parameters in the analysis of shoulder rotation.

MATERIALS AND METHODS
Nineteen healthy subjects (7M, 12F; age: 23.2±2.7 years) participated. Shoulder kinematics were measured with six infrared cameras (Optitrack). The arm was fixed in a light wooden frame with velcro straps in order to keep the elbow angle at 90 degrees flexion. The subjects were asked to perform two series of ten shoulder internal and external full range rotations. The two series of movements were separated by two minutes of rest without removing the wooden frame. The protocol was repeated for both arms in randomized order.

RESULTS
Side dominance was asked to the subjects resulting in two left dominant subjects. The data were divided in dominant and non-dominant side in order to evaluate differences in shoulder stability analysis between the two sides. The shoulder rotations were analysed with the FHA technique, using angles of 10 degrees to compute each FHA. The dispersion of the FHA for each of the four conditions was computed using the minimum convex hull (CH) and mean angle (MA).

CONCLUSIONS
The reliability of the helical axis parameters was excellent for both sides. Further investigations are needed to establish the clinical relevance of this technique in patients with SI.

Table

<table>
<thead>
<tr>
<th>Non-dominant side</th>
<th>Dominant side</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC (95%CI)</td>
<td>SEM</td>
</tr>
<tr>
<td>RoM (°)</td>
<td>0.91 (0.76; 0.96)</td>
</tr>
<tr>
<td>CHA (cm²)</td>
<td>0.93 (0.83; 0.97)</td>
</tr>
<tr>
<td>CHA Acromion (cm²)</td>
<td>0.95 (0.86; 0.98)</td>
</tr>
<tr>
<td>MA (°)</td>
<td>0.84 (0.57; 0.94)</td>
</tr>
</tbody>
</table>

Summary of the reliability parameters. ICC, conf. interv. (95%) upper and lower bounds, std error of the meas. (SEM) and minimum detectable change (MDC) are shown for the four variables analysed.

REFERENCES

ACKNOWLEDGEMENTS: Thim van der Laan Foundation, Landquart, Switzerland for funding the study. e-mail: corredo.cescon@supsi.ch.