
Evolving Large-Scale Neural Networks
for Vision-Based Reinforcement Learning

Jan Koutník Giuseppe Cuccu Jürgen Schmidhuber Faustino Gomez
IDSIA, USI-SUPSI

Galleria 2
Manno-Lugano, CH 6928

{hkou, giuse, juergen, tino}@idsia.ch

ABSTRACT

The idea of using evolutionary computation to train artifi-
cial neural networks, or neuroevolution (NE), for reinforce-
ment learning (RL) tasks has now been around for over 20
years. However, as RL tasks become more challenging, the
networks required become larger, so do their genomes. But,
scaling NE to large nets (i.e. tens of thousands of weights)
is infeasible using direct encodings that map genes one-to-
one to network components. In this paper, we scale-up our
“compressed” network encoding where network weight ma-
trices are represented indirectly as a set of Fourier-type co-
efficients, to tasks that require very-large networks due to
the high-dimensionality of their input space. The approach
is demonstrated successfully on two reinforcement learning
tasks in which the control networks receive visual input: (1)
a vision-based version of the octopus control task requiring
networks with over 3 thousand weights, and (2) a version of
the TORCS driving game where networks with over 1 mil-
lion weights are evolved to drive a car around a track using
video images from the driver’s perspective.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets

Keywords
neuroevolution; indirect encodings; vision-based TORCS;
reinforcement learning; games

1. INTRODUCTION
Neuroevolution (NE), has now been around for over 20

years. The main appeal of evolving neural networks instead
of training them (e.g. backpropagation) is that it can po-
tentially harness the universal function approximation ca-
pability of neural networks to solve reinforcement learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

(RL) tasks without relying on noisy, nonstationary gradient
information to perform temporal credit assignment.

Early work in NE focused on evolving rather small net-
works (hundreds of weights) for RL benchmarks, and con-
trol problems with relatively few inputs/outputs. However,
as RL tasks become more challenging, the networks required
become larger, as do their genomes. The result is that scal-
ing NE to large nets (i.e. tens of thousands of weights)
is infeasible using a straightforward, direct encoding where
genes map one-to-one to network components. Therefore,
recent efforts have focused increasingly on indirect encod-
ings [2, 3, 6, 7, 13] where relatively small genomes are trans-
formed into networks of arbitrary size using a more complex
mapping.

In previous work [4, 8, 9, 14], we presented a new indirect
encoding where network weight matrices are represented as
a set of coefficients that are transformed into weight val-
ues via an inverse Fourier-type transform, so that evolution-
ary search is conducted in the frequency-domain instead of
weight space. The basic idea is that if nearby weights in the
matrices are correlated, then this regularity can be encoded
using fewer coefficients than weights, effectively reducing the
search space dimensionality. For problems exhibiting a high-
degree of redundancy, this “compressed” approach can result
in an two orders of magnitude fewer free parameters and sig-
nificant speedup [8].

With this encoding, networks with over 3000 weights were
evolved to successfully control a high-dimensional version of
the Octopus Arm task [16], by searching in the space of as
few as 20 Fourier coefficients (164:1 compression ratio) [10].
In this paper, the approach is scaled up to two tasks that
require networks with up to over 1 million weights, due to
their use of high-dimensional, vision inputs: (1) a visual
version of the aforementioned Octopus Arm task, and (2) a
visual version of the TORCS race car driving environment.
In the standard setup for TORCS, used now for several years
in reinforcement learning competitions (e.g. [11]), a set of
features describing the state of the car is provided to the
driver. In the version used here, the controllers do not have
access to these features, but instead must drive the car using
only a stream of images from the driver’s perspective; no
task-specific information is provided to the controller, and
the controllers must compute the car velocity internally, via
feedback (recurrent) connections, based on the history of
observed images. To our knowledge this the first attempt to
tackle TORCS using vision, and successfully evolve neural
network controllers of this size.

The next section describes the compressed network encod-

Figure 1: Mapping the coefficients: The cuboidal
array (top) is filled with the coefficients from chro-
mosome g one simplex at a time, according to Al-
gorithm 1, starting at the origin and moving to the
opposite corner one simplex at a time.

ing in detail. Section 3 presents the experiments in the two
test domains, which are discussed in section 4.

2. COMPRESSED NETWORKS
Networks are encoded as a string or genome, g = {g1, . . . ,

gk}, consisting of k substrings or chromosomes of real num-
bers representing DCT coefficients. The number of chro-
mosomes is determined by the choice of network architec-
ture, Ψ, and data structures used to decode the genome,
specified by Ω={D1, . . . , Dk}, where Dm, m = 1..k, is the
dimensionality of the coefficient array for chromosome m.
The total number of coefficients, C =

∑k
m=1 |gm| � N , is

user-specified (for a compression ratio of N/C, where N is
the number of weights in the network), and the coefficients
are distributed evenly over the chromosomes. Which fre-
quencies should be included in the encoding is unknown.
The approach taken here restricts the search space to band-
limited neural networks where the power spectrum of the
weight matrices goes to zero above a specified limit fre-
quency, cm` , and chromosomes contain all frequencies up to
cm` , gm = (cm0 , . . . , c

m
`).

Figure 2 illustrates the procedure used to decode the geno-
mes. In this example, a fully-recurrent neural network (on
the right) is represented by k = 3 weight matrices, one for
the input layer weights, one for the recurrent weights, and
one for the bias weights. The weights in each matrix are gen-
erated from a different chromosome which is mapped into
its own Dm-dimensional array with the same number of ele-
ments as its corresponding weight matrix; in the case shown,
Ω={3, 3, 2}: 3D arrays for both the input and recurrent ma-
trices, and a 2D array for the bias weights.

In [8], the coefficient matrices were 2D, where the sim-
plexes are just the secondary diagonals; starting in the top-
left corner, each diagonal is filled alternately starting from
its corners. However, if the task exhibits inherent structure
that cannot be captured by low frequencies in a 2D layout,
more compression can potentially be gained by organizing
the coefficients in higher-dimensional arrays [10].

Each chromosome is mapped to its coefficient array ac-
cording to Algorithm 1 (figure 1) which takes a list of array
dimension sizes, d = (d1, . . . , dDm) and the chromosome, gm,
to create a total ordering on the array elements, eξ1,...,ξDm

.
In the first loop, the array is partitioned into (Dm− 1)-
simplexes, where each simplex, si, contains only those el-

Algorithm 1: Coefficient mapping(g, d)

j ← 0
K ← sort(diag(d) − I)
for i = 0 to |d| − 1 +

∑|d|
n=1 dn do

l ← 0

si ← {e|
∑|d|
k=1 eξj = i}

while |si| > 0 do
ind[j] ← argmin

e∈si

∥∥e−K[l++ mod |d|]
∥∥

si ← si \ ind[j++]

end

end
for i = 0 to |ind| do

if i < |g| then
coeff array[ind[i]] ← ci

else
coeff array[ind[i]] ← 0

end

end

(a) (b)

Figure 3: Visual Octopus Arm. (a) The arm has to
reach the goal (red dot) using a noisy visualization
of the environment (b).

ements e whose Cartesian coordinates, (ξ1, . . . , ξDm), sum
to integer i. The elements of simplex si are ordered in the
while loop according to their distance to the corner points,
pi (i.e. those points having exactly one non-zero coordinate;
see example points for a 3D-array in figure 1), which form
the rows of matrix K = [p1, . . . , pm]T , sorted in descending
order by their sole, non-zero dimension size. In each loop
iteration, the coordinates of the element with the smallest
Euclidean distance to the selected corner is appended to the
list ind, and removed from si. The loop terminates when si
is empty.

After all of the simplexes have been traversed, the vec-
tor ind holds the ordered element coordinates. In the final
loop, the array is filled with the coefficients from low to high
frequency to the positions indicated by ind; the remaining
positions are filled with zeroes. Finally, a Dm−dimensional
inverse DCT transform is applied to the array to generate
the weight values, which are mapped to their position in the
corresponding 2D weight matrix. Once the k chromosomes
have been transformed, the network is complete.

3. EXPERIMENTS
Two vision-based control tasks were used to scale-up the

=
Map

Genome

Inverse

DCT

Weight Matrices

Network

Weight SpaceFourier Space

Map

| {z } | {z }

|
{z

}|
{z

}|
{z

}

g
1

g
2

g
3

Ω Ψ

Figure 2: Decoding the compressed networks. The figure shows the three step process involved in trans-
forming a genome of frequency-domain coefficients into a recurrent neural network. First, the genome (left)
is divided into k chromosomes, one for each of the weight matrices specified by the network architecture, Ψ.
Each chromosome is mapped, by Algorithm 1, into a coefficient array of a dimensionality specified by Ω. In
this example, an RNN with two inputs and four neurons is encoded as 8 coefficients. There are k = |Ω| = 3,
chromosomes and Ω={3, 3, 2}. The second step is to apply the inverse DCT to each array to generate the
weight values, which are mapped into the weight matrices in the last step.

compressed network encoding, the Visual Octopus Arm and
Visual TORCS. All neural network controllers were evolved
using the Cooperative Synapse NeuroEvolution (CoSyNE; [5])
algorithm.

3.1 Visual Octopus Arm
The octopus arm (see figure 3) consists of p compartments

floating in a 2D water environment. Each compartment has
a constant volume and contains three controllable muscles
(dorsal, transverse and ventral). The state of a compartment
is described by the x, y-coordinates of two of its corners plus
their corresponding x and y velocities. Together with the
arm base rotation, the arm has 8p + 2 state variables and
3p + 2 control variables. In the vision-based version used
here, the control network does not have access to the state
variables. Instead it receives a noisy 32×32 pixel gray-scale
image of the arm from a the perspective shown in figure 3(b).
The goal of the task to reach a target position with the tip
of the arm, from the starting position (arm hanging down)
by contracting the 32 muscles appropriately at each 1s step
of simulated time. Figure 3(a) shows the standard visualiza-
tion the environment with the arm hanging down and two
target positions shown in red. The idea of modifying an
existing RL benchmark to use visual inputs dates back to
the adaptive “broom balancer” of (author?) [15], and more
recently the vision-based mountain car in [1].

3.1.1 Setup
An evaluation consists of two trials, one with the target

on the left, the other on the right, see figure 3. In each trial
the target disappears after the first time-step, so that the
network must remember which target is active throughout
trial in order to solve the task. Having two target positions
forces the controller to use the visual input instead of just
outputting a fixed action sequence (i.e. open-loop control).

The controllers were represented by fully-connected recur-
rent neural networks with 32 neurons, one for each muscle
in the 10 compartment arm, for a total of 33,824 weights

organized into 3 weight matrices. Twenty simulations were
run with networks encoded using the following numbers of
DCT coefficients: {10,20,40,80,160,320,640,1280,2560}. In
all case the coefficients were mapped into 3 coefficient ar-
rays using mapping Ω={4, 4, 2}: (1) a 4D array encodes
the input weights from the 2D input image to the 2D array
of neurons, so that each weight is correlated (a) with the
weights of adjacent pixels for the same neuron, (b) with the
weights for the same pixel for neurons that are adjacent in
the 3× 11 grid, and (c) with the weights from adjacent pix-
els connected to adjacent neurons; (2) a 4D array encodes
the recurrent weights, again capturing three types of correla-
tion; (3) a 2D array encodes the hidden layer biases (see [10]
for further discussion of higher-dimensional coefficient ma-
trices).

CoSyNE was used to evolve the coefficient genomes, with
a population size of 128, a mutation rate of 0.8, and fitness
computed as the average of the following score over the two
trials:

max

[
1− t

T

d

D
, 0

]
, (1)

where t is the number of time-steps before the arm touches
the target, T is a number of time-steps in a trial, d is the
final distance of the arm tip to the target and D is the
initial distance of the arm tip to the goal. Each trial lasted
for T = 200 time-steps.

3.1.2 Results
Figure 6 compare the performance of the various com-

pressed encoding with the direct encoding in which evolu-
tion is conducted in 33,824-dimensional weight space. Using
only 10 coefficients performs poorly but almost as well as
the direct approach. With just 20 coefficient performance
increases significantly, and after 40 coefficients, near optimal
performance is achieved. For a video demo of the evolved be-
havior go to http://www.idsia.ch/~koutnik/images/octo
pusVisual.mp4

(a) (b) (c)

Figure 4: Visual TORCS environment. (a) The 1st-person perspective used as input to the RNN controllers
(figure 5) to drive the car around the track. (b), a 3rd-person perspective of car. The controllers were
evolved using a track (c) of length of 714.16m and road width of 10m, that consists of straight segments of
length 50 and 100m and curves with radius of 25m. The car starts at the bottom (start line) and has to drive
counter-clockwise. The track boundary has a width of 14m.

3.2 Visual TORCS
The goal of the task is to evolve a recurrent neural network

controller that can drive the car around a race track using
only vision. The challenge for the controller is not only to
interpret each static image as it is received, but also to retain
information from previous images in order to compute the
velocity of the car internally, via its feedback connections.

The visual TORCS environment is based on TORCS ver-
sion 1.3.1. The simulator had to be modified to provide
images as input to the controllers. At each time-step dur-
ing a network evaluation, an image rendered in OpenGL
is captured in the car code (C++), and passed via UDP
to the client (Java), that contains the RNN controller. The
client is wrapped into a Java class that provides methods for
setting up the RNN weights, executing the evaluation, and
returning the fitness score. These methods are called from
Mathematica which is used to implement the compressed
networks and the evolutionary search.

The Java wrapper allows multiple controllers to be evalu-
ated in parallel in different instances of the simulator via dif-
ferent UDP ports. This feature is critical for the experiments
presented below since, unlike the non-vision-based TORCS,
the costly image rendering, required for vision, cannot be
disabled. The main drawback of the current implementa-
tion is that the images are captured from the screen buffer
and, therefore, have to actually be rendered to the screen.

Other tweaks to the original TORCS include changing the
control frequency from 50 Hz to 5 Hz, and removing the “3-
2-1-GO” waiting sequence from the beginning of each race.
The image passed in the UDP is encoded as a message chunk
with image prefix, followed by unsigned byte values of the
image pixels. Each image is decomposed into the HSB color
space and only the saturation (S) plane is passed in the
message.

3.2.1 Setup
In each fitness evaluation, the car is placed at the starting

line of the track shown in figure 4(c), and its mirror image,

and a race is run for 25s of simulated time, resulting in a
maximum of 125 time-steps at the 5Hz control frequency.
At each control step (see figure 5), a raw 64 × 64 pixel im-
age, taken from the driver’s perspective is split into three
color planes (hue, saturation and brightness). The satura-
tion plane is passed through Robert’s edge detector [12] and
then fed into a Elman (recurrent) neural network (SRN)
with 16× 16 = 256 fully-interconnected neurons in the hid-
den layer, and 3 output neurons. The first two outputs,
o1, o2, are averaged, (o1 + o2)/2, to provide the steering sig-
nal, and the third neuron, o3 controls the brake and throttle
(−1 = full brake, 1 = full throttle). All neurons use sig-
moidal activation functions.

With this architecture, the networks have a total of 1,115,
139 weights, organized into 5 weight matrices. The weights
are encoded indirectly by 200 DCT coefficients which are
mapped into 5 coefficient arrays using mapping Ω={4, 4, 2, 3,
1} : (1) a 4D array encodes the input weights from the 2D
input image to the 2D array of neurons in the hidden layer,
so that each weight is correlated (a) with the weights of
adjacent pixels for the same neuron, (b) with the weights for
the same pixel for neurons that are adjacent in the 16× 16
grid, and (c) with the weights from adjacent pixels connected
to adjacent neurons; (2) a 4D array encodes the recurrent
weights in the hidden layer, again capturing three types of
correlations; (3) a 2D array encodes the hidden layer biases;
(4) a 3D array encodes weights between the hidden layer
and 3 output neurons; and (5) a 1D array with 3 elements
encodes the output neuron biases.

CoSyNE was used to evolve the coefficient genomes, with
a population size of 64, a mutation rate of 0.8, and fitness
being computed by:

f = d− 3m

1000
+
vmax

5
− 100c , (2)

where d is the distance along the track axis, vmax is maxi-
mum speed, m is the cumulative damage, and c is the sum
of squares of the control signal differences, divided by the

Figure 6: Performance on Visual Octopus Arm Task.
Each curve is the average of 20 runs using a partic-
ular number of coefficients to encode the networks.

number of control variables, 3, and the number simulation
control steps, T :

c =
1

3T

3∑
i

T∑
t

[oi(t)− oi(t− 1)]2. (3)

The maximum speed component in equation (2) forces
the controllers to accelerate and brake efficiently, while the
damage component favors controllers that drive safely, and
c encourages smoother driving. Fitness scores roughly cor-
respond to the distance traveled along the race track axis.

Each individual is evaluated both on the track and its
mirror image to prevent the RNN from blindly memorizing
the track without using the visual input.1 The original track
starts with a left turn, while the mirrored track starts with
a right turn, forcing the network to use the visual input to
distinguish between tracks. The fitness score is calculated
as the minimum of the two track scores.

3.2.2 Results
Table 1 compares the distance travelled and maximum

speed of the visual RNN controller with that of other, hard-
coded controllers that come with the TORCS package. The
performance of the vision-based controller is similar to that
of the other controllers which enjoy access to the full set of
pre-processed TORCS features, such as forward and lateral
speed, angle to the track axis, position at the track, distance
to the track side, etc.

Figure 7 shows the learning curve for the compressed net-
works (upper curve). The lower curve shows a typical evolu-
tionary run where the network is evolved directly in weight
space, i.e. using chromosomes with 1,115,139 genes, one for
each weight, instead of 200 coefficient genes. Direct evolu-
tion makes little progress as each of the weights has to be
set individually, without being explicitly constrained by the
values of other weights in their matrix neighborhood, as is
the case for the compressed encoding.

As discussed above, the controllers were evaluated on two
tracks to prevent them from simply “memorizing” a single

1Evolution can find weights that implement a dynamical
system that drives around the track from the same initial
conditions, even with no input.

Table 1: Maximum distance, d, in meters and max-
imum speed, vmax, in kilometers per hour achieved
by the selected hard-coded controllers that enjoy ac-
cess to the state variables, compared to the visual
RNN controller which does not.

controller d [m] vmax [km/h]

olethros 570 147
bt 613 141
berniw 624 149
tita 657 150
inferno 682 150
visual RNN 625 144

sequence of curves. In the initial stages of evolution, a sub-
optimal strategy is to just drive straight on both tracks ig-
noring the first curve, and crashing into the barrier. This is
a simple behavior, requiring no vision, that produces rela-
tively high fitness, and therefore represents local minima in
the fitness landscape. This can be seen in the flat portion
of the curve until generation 118, when the fitness jumps
from 140 to 190, as the controller learns to turn both left
and right. Gradually, the controllers start to distinguish be-
tween the two tracks as they develop useful visual feature
detectors, and from then on the evolutionary search refines
the control to optimize acceleration and braking through the
curves and straight sections. For a video demo go to
http://www.idsia.ch/~koutnik/images/torcsVisual.mp4

4. DISCUSSION
The compressed network encoding reduces the search space

dimensionality by exploiting the inherent regularity in the
environment. Since, as with most natural images, the pix-
els in a given neighborhood tend to have correlated values,
searching for each weight independently is overkill. Us-
ing fewer coefficients than weights sacrifices some expressive
power (some networks can no longer be represented), but
constrains the search to the subspace of lower complexity,
but still sufficiently powerful networks, reducing the search
space dimensionality by, e.g. a factor of more than 5000 for
the car-driving networks evolved here.

Figure 8(a) shows the weights from the input layer of a
successful car-driving network. Each 64×64 square corre-
sponds to the input weight values of a particular neuron
in the 16×16 hidden layer. The pattern in each square in-
dicates the part of the input image to which the neuron
responds. Because of the 4D structure of the input coeffi-
cient matrix, these feature detectors vary smoothly across
the layer. This regularity is apparent in all five of the net-
work matrices. Figures 8(b) and 8(c) show the activation of
the hidden layer while driving through a left and right curve
on the track, respectively. The two curves produce very dif-
ferent activation patterns from which the network computes
the control signal. The highly activated neurons (in orange)
form contiguous regions due to the correlation between the
feature detectors of adjacent neurons.

Further experiments are needed to compare the approach
with other indirect or generative encodings such as Hyper-
NEAT [2]; not only to evaluate the relative efficiency of each
algorithm, but also to understand how the methods differ in

Figure 5: Visual TORCS network controller pipeline. At each time-step a raw 64×64 pixel image, taken from
the driver’s perspective, is split into three planes (hue, saturation and brightness). The saturation plane is
then passed through Robert’s edge detector [12] and then fed into the 164×16=256 recurrent neurons of the
controller network, which then outputs the three driving commands.

the type of solutions they produce. Part of that comparison
should involve testing the controllers in different conditions
from those under which they were evolved (e.g. on different
tracks) to measure the degree to which the ability to gen-
eralize benefits from the low-complexity representation, as
was shown in [10].

In this work, the size of the networks was decided heuris-
tically. In the future, we would like to apply Compressed
Network Complexity Search [4] to simultaneously determine
the number of coefficients and the number of neurons (topol-
ogy) by running multiple evolutionary algorithms in paral-
lel, one for each topology-coefficient complexity class, and
assigning run-time to each based on a probability distribu-
tion that is adapted on-line according to the performance of
each class. This approach has so far only been applied to
much simpler control tasks than those used here, but should
produce solutions for harder tasks that are both simple in
terms of weight matrix regularity, and model class, to evolve
potentially more robust controllers.

The compressed network encoding used here assumes band-
limited networks, where the matrices can contain all frequen-
cies up to a predefined limit frequency. For networks with
as many weights as those used for visual TORCS, this may
not be the best scheme as the limit has to be chosen by the
user, and if some specific high frequency is needed to solve
the task, then all lower frequencies must be searched as well.
A potentially more tractable approach might be General-
ized Compressed Network Search (GCNS; [14]) which uses
a messy GA to simultaneously determine which arbitrary
subset of frequencies should be used as well as the value at
each of those frequencies. Our initial work with this method
has been promising.

Figure 7: Visual TORCS results. Typical fitness
evolution of a compressed (upper curve) and directly
encoded (lower curve) controller during 1000 gener-
ations. The compressed controller escapes from the
local minima at generation 118, but the directly en-
coded network never learns to distinguish between
left and right curve from the visual features.

(a)

(b)

(c)

Figure 8: Evolved low-complexity feature detectors. (a) each square shows the 64×64 input weight values
corresponding to one of the neurons in 16×16 hidden layer. Colors indicate weight value: orange = large
positive; blue = large negative. (b) the activation of each neuron in the hidden layer while the car is being
driven through and left curve, and (c) during a right curve.

Acknowledgements
This research was supported by Swiss National Science Foun-
dation grants #137736: “Advanced Cooperative NeuroEvo-
lution for Autonomous Control” and #138219: “Theory and
Practice of Reinforcement Learning 2”. Koutńık implemented
the compressed networks based on original ideas from our
previous work cited here, and conducted the experiments.
Schmidhuber supervised Koutńık. Cuccu devised and im-
plemented the extensive modifications to the TORCS simu-
lator. Gomez directed this research, and wrote most of the
paper.

References
[1] G. Cuccu, M. Luciw, J. Schmidhuber, and F. Gomez.

Intrinsically motivated evolutionary search for
vision-based reinforcement learning. In Proceedings of
the IEEE Conference on Development and Learning,
and Epigenetic Robotics, 2011.

[2] D. B. D’Ambrosio and K. O. Stanley. A novel
generative encoding for exploiting neural network
sensor and output geometry. In Proceedings of the 9th
annual conference on Genetic and evolutionary
computation, (GECCO), pages 974–981, New York,
NY, USA, 2007. ACM.

[3] J. Gauci and K. Stanley. Generating large-scale neural
networks through discovering geometric regularities.
In Proceedings of the Conference on Genetic and
Evolutionary Computation, pages 997–1004, New
York, NY, USA, 2007. ACM.

[4] F. Gomez, J. Koutńık, and J. Schmidhuber.
Compressed network complexity search. In
Proceedings of the 12th International Conference on
Parallel Problem Solving from Nature (PPSN XII,
Taormina, IT), 2012.

[5] F. Gomez, J. Schmidhuber, and R. Miikkulainen.
Accelerated neural evolution through cooperatively
coevolved synapses. Journal of Machine Learning
Research, 9(May):937–965, 2008.

[6] F. Gruau. Cellular encoding of genetic neural
networks. Technical Report RR-92-21, Ecole Normale
Superieure de Lyon, Institut IMAG, Lyon, France,
1992.

[7] H. Kitano. Designing neural networks using genetic
algorithms with graph generation system. Complex
Systems, 4:461–476, 1990.

[8] J. Koutńık, F. Gomez, and J. Schmidhuber. Evolving
neural networks in compressed weight space. In
Proceedings of the Conference on Genetic and
Evolutionary Computation (GECCO), 2010.

[9] J. Koutńık, F. Gomez, and J. Schmidhuber. Searching
for minimal neural networks in fourier space. In
Proceedings of the 4th Annual Conference on Artificial
General Intelligence, 2010.

[10] J. Koutńık, J. Schmidhuber, and F. Gomez. A
frequency-domain encoding for neuroevolution.
Technical report, arXiv:1212.6521, 2012.

[11] D. Loiacono, P. L. Lanzi, J. Togelius, E. Onieva, D. A.
Pelta, M. V. Butz, T. D. Lönneker, L. Cardamone,
D. Perez, Y. Sáez, M. Preuss, and J. Quadflieg. The
2009 simulated car racing championship, 2009.

[12] L. G. Roberts. Machine Perception of
Three-Dimensional Solids. Outstanding Dissertations
in the Computer Sciences. Garland Publishing, New
York, 1963.

[13] J. Schmidhuber. Discovering neural nets with low
Kolmogorov complexity and high generalization
capability. Neural Networks, 10(5):857–873, 1997.

[14] R. K. Srivastava, J. Schmidhuber, and F. Gomez.
Generalized compressed network search. In
Proceedings of the 12th International Conference on
Parallel Problem Solving from Nature (PPSN XII,
Taormina, IT), 2012.

[15] V. V. Tolat and B. Widrow. An adaptive “broom
balancer” with visual inputs. In Proceedings of the
IEEE International Conference on Neural Networks
(San Diego, CA), pages 641–647. Piscataway, NJ:
IEEE, 1988.

[16] Y. Yekutieli, R. Sagiv-Zohar, R. Aharonov, Y. Engel,
B. Hochner, and T. Flash. A dynamic model of the
octopus arm. I. biomechanics of the octopus reaching
movement. Journal of Neurophysiology,
94(2):1443–1458, 2005.

