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Abstract—We present the Swiss2Grid project, a pilot and
demonstration aimed at evaluating the impact of different dis-
tributed demand management policies in Smart Grids. The
increasing diffusion of decentralised energy generation, especially
photovoltaics, can lead to severe imbalances on the electric grid,
which could require huge investments in grid infrastructures.
The approach proposed by the Swiss2Grid project is to adopt
a decentralised approach to load management at the local level.
Single households use a local algorithm that, based only on local
voltage and frequency measures, shifts the pre-emptible loads in
time in order to minimise the costs for the consumer and to
maximise the grid stability. In this paper we present the project
set-up in Mendrisio, a city in Southern Switzerland, we describe
the algorithm principles, and finally we present some preliminary
results showing the impact of the Swiss2Grid algorithm on the
Low Voltage grid.

I. INTRODUCTION

The rapid diffusion of small scale and decentralized re-
newable energy sources poses a considerable challenge to the
electric energy generation and distribution companies. The
intermittent and decentralized production of electric energy
represents a disruptive change in the technical, organizational
and economic development of the electricity sector [1]. The
combination of the electric grid with the massive use of infor-
mation and communication technologies in the so called smart
grids offers a promising solution to the increasing problem
to integrate different renewable energy resources, to control
and manage the balance between generation, consumption and
storage and to optimize the use of the present infrastructure.

The need to develop smart grids to achieve common goals
for secure energy supply, economic development and for a
mitigation of the impact of the global climate change is a
widely shared opinion[2]. However the complexity of the
electricity system and the tremendous investments in new
communication infrastructures supposed to centrally control
and manage the load over the whole grid are creating a high
barrier to the expansion of smart grids. Although there is a
wide range of projects on smart grid going on[3], the exact
design and the appropriate technologies for smart grids needs
still much of research and tests in pilot studies.

In Switzerland, the diffusion of decentralized energy gen-
eration by photovoltaics or wind is still very low compared to
the neighboring countries and represents less than 1% of the
overall electricity production [4]. This is why the debate on
smart grids is still in its beginning. However during the last
two years, the impact of the rapid increase of PV in Southern

Germany attracted the attention of various Swiss stakeholders
and seriously questions their business model. The new Swiss
energy policy strategy for 2050, decided after the Fukushima
accident, fosters the increase of renewable energy resources
and gives decentralized energy generation a relevant role [5].

Until now Swiss utilities were rather reluctant to approach
the problem of the potential impact of renewables since the
distribution network and the grid are still over-dimensioned.
Yet, recent experience in Germany demonstrates that evolution
in this field is fast and uncontrolled growth could lead to
grid instabilities. Moreover, distributed power generation and
an expected widespread adoption of electric vehicles might
require major investments in transmission and distribution
grid infrastructures, which have been estimated to be 18
billions Swiss Francs [6] for Switzerland. It is expected that
the application of intelligent smart grid technologies has a
potential to reduce those investments [7] and therefore the
Swiss government asked the the Federal Office for Energy to
steer a large group of experts to produce a Swiss road map for
smart grids development [8].

Given this context, in 2010 the Swiss2Grid (S2G) pilot and
demonstration project was started. The fundamental idea of the
project is to optimize the load management of the low voltage
distribution grid by a fully-decentralized decision making
algorithm. The algorithm makes decisions on load shifting
simply based on local information on voltage and frequency.
The overall status of the network is therefore estimated and
forecasted with local information and limited communication.

The S2G project follows an approach based on local and
decentralized decision management for load shifting. The main
goal of the project is to assess the real need of a two - way
communication system and coordination scheme deputed to
control the network load and to overcome the problems related
to the transmission and elaboration of huge amounts of data.
The second related goal is to understand to which extent local
sources of energy generation can be connected to the grid
without requiring new investments in the grid infrastructure.

Being deployed in a real-world setting in the city of
Mendrisio (Canton Ticino, Switzerland), the project features
comprehensive real data collection and opens the possibility
of ad-hoc controlled experiments. Real data allows for the
calibration of an accurate and realistic simulator to be used
for scaling up experiments.

The paper is structured as follows. In Section II we in-
troduce the project set-up and the measurement infrastructure.



Fig. 1. Representation of the distribution network connected to the Asilo-
Genestrerio MV-LV transformer in Mendrisio; the 10 pertecipating households
under this transformer are depicted as filled red triangles. Grid measurements
are acquired at blue dots.

Section III describes the rationale and the principles under-
lying the algorithm and the simulation environment we have
developed to test the algorithm in silico. Section IV introduces
some experiments designed to validate the algorithm and then
in Section V the S2G project infrastructure is used to evaluate
different policies and strategies for smart grid management
such as the impact of the communication infrastructure and
the effect of volatile energy prices. In the last section some
preliminary conclusions are drawn.

II. THE SWISS2GRID PILOT AND DEMONSTRATION
PROJECT

A. The project set up

The Swiss2Grid project is a pilot and demonstration
project. It involves 20 private households selected among 134
candidates in the region of Mendrisio. The energy supply
is provided by local electricity distributor AIM (Aziende
Industriali Mendrisio).

The selection of users was aimed at creating various
clusters of households, where each cluster was grouped under
the same medium voltage to low voltage (MV-LV) transformer.
The most numerous cluster is composed of ten users, repre-
senting more than 10% of the total customers connected to that
MV-LV transformer (see Figure 1). The selected users accepted
to participate actively in the demonstration phase as every
participating household was rewarded with the installation of a
photovoltaics (PV) plant of 1.5kWp. House owners were keen
to add their own contribution adding more installed generation
power in total the sum of installed power was about 88kWp.

In each house was also installed a Household Appliance
Controller (HAC). The HAC reads the grid state, measured
as voltage, current and frequency over the three phases, and
controls up to eight load sources thanks to the implementation

Fig. 2. Layout of the Swiss2Grid project components.

of the algorithm. Each HAC is connected over a powerline
communication (Echelon) with a touch panel by which the user
can set his/her preferences and visualise relevant information.
The touch panel also works as a data gateway for all the
information collected in one single household and transmits
it over the internet to a central server. All data are verified and
alarms are automatically raised in case of problems, e.g. with
inverters or with monitoring equipment. It must be noted that
this centralized data collection is intended for data analysis
only as no centralized communication is expected for the
final deployment of the Swiss2Grid concept. In Figure 2 we
describe the overall structure of the Swiss2Grid system. The
top layer contains the physical components (users, households,
measurement devices and the grid network), while the bottom
one lists the software components (the household simulator
and controller, and the grid simulator). The software layer is
used to design the algorithm to optimise the load shifting. The
algorithm is then deployed in the HAC at the physical level.

B. Grid measurements

In order to investigate the impact of renewable sources
on the grid, different measurement campaigns were and are
still carried out at the level of the house connection point and
the MV-LV transformers with highly sensitive measurement
equipments. All the data from the monitoring equipment are
time-stamped via the Network Time Protocol (NTP) to be
ready for parallel and dependency analysis with the goal to get
a full picture for the critical states of the grid in very short-
term intervals. The required time accuracy has been achieved
and verified by using a combination of GPS time signals and
NTP signals.

C. The project team

Swiss2Grid is a project requiring interdisciplinary knowl-
edge as it delivers a hardware and software solution for
local load management in a smart grid. The measurement
infrastructure was a joint effort of SUPSI - ISAAC and Bacher
Energie AG, the algorithm development was provided by
SUPSI - IDSIA, as well as the household simulator while the
low voltage grid simulations were developed by BFH. SUPSI
ISEA developed the HAC prototypes while the touch panel
software and the data communication protocol for domestics
(DomoML) were assigned to SUPSI ISIN. SUPSI - ISAAC
coordinates the whole project. In summary, two Schools of



Applied Sciences (SUPSI - University of Applied Sciences of
Southern Switzerland with four different institutes and BFH,
the Bern University of Applied Sciences) and one industrial
partner (Bacher Energie) teamed up to make Swiss2Grid
possible.

III. MODELS, ALGORITHMS AND SIMULATION

The S2G algorithm has been designed in order to minimise
the user costs and to maintain the local grid stability by shifting
user loads when the price for energy is convenient and when
the grid load is not excessive. Note that these objectives may
be contrasting. The control algorithm implemented at each
node is able to deal with multiple objectives and implements
a two-level lexicographic scheme [9], [10]. In other words,
each node can be configured to optimize a primary objective
function and successively a secondary objective function sub-
ject to the constraint that the optimal value of the primary
objective is not worsened more than a certain percentage. For
example, because control actions for distributed smart grid
management are implemented at residential level on end user’s
appliances [11], the primary objective we commonly use is
related to the end user’s energy costs. Secondary objectives
can be the network stability or the aggregated network load.

This control mechanism is implemented through a dis-
tributed algorithm [12]. Each intelligent node (controller)
is based on a mathematical model that includes variables
representing the current and future states for one or more
controllable devices (such as home appliances or electric
vehicles) up to a temporal horizon of 24 hours, which is
divided in a set T of 96 time slots, each with the same duration
∆t = 15min. The system implements the model predictive
control [13] paradigm: after the model is solved, one can
determine the desired state of each appliance for each time
slot. In the mathematical model (see [14] for details), the
operational constraints of all devices are accounted for: for
example, a water heater’s temperature must always stay within
a given temperature range, and the program of a washing
machine must be finished before a given deadline previously
defined by the resident.

The approach is validated through a comprehensive micro-
simulation of households and their interconnecting grid. Some
of the loads in each household are controlled by means of the
distributed algorithm described above. The controller in each
household takes as input the voltage measured at the plug,
which is computed by simulating the relevant portion of the
LV network.

The following appliance classes are simulated, using dis-
crete 10-seconds time steps.

Energy buffers model appliances such as water heaters, air
conditioning/heating systems, and fridges. Electrical energy
used by the appliances keeps the system in a defined oper-
ational state (e.g., a given temperature range). Because such
appliance class accounts to the largest portion of household
loads, its intelligent control has been discussed in several
works [15], [16], [17], [18]. For each energy buffer, we con-
sider an unpredictable use its energy as well as the following
characteristics: heat/energy capacity, a self-discharge rate, and
thermal efficiencies.

Batteries for energy storage behave similarly to energy
buffers. We simulate the evolution of their state of charge
accounting for the self-discharge rate, maximum charge, max-
imum charging/discharging power, and charging/discharging
efficiency.

Electric vehicle chargers consider the same characteristics
outlined above for batteries. In addition, simulated residents
define realistic release (plug) and due (unplug) times for
the electric vehicles. After use, some fraction of the battery
charge is depleted. Smart control of EV charging is subject to
significant attention by researchers [19], [20], due to its easy
controllability and foreseen increase in EV penetration rates.

Non-preemptible loads include washing machines, dish-
washers, and all appliances operating according to a pre-
determined working program which can not normally be inter-
rupted. Such appliances are normally idle: when started, they
draw a pre-defined electrical load profile. Jobs to be executed
are generated through realistic patterns and are characterized
by a release time (e.g. when a dishwasher is loaded) and a
due time (e.g. when the user wants the program to be over).
Algorithms schedule the appropriate starting time in order to
meet such strict requirements.

Non-controllable loads model appliances like TV sets,
house lighting, and kitchen appliances, which are driven
uniquely by simulated residents. Therefore, they are not subject
to controllers.

Household residents are simulated as stochastic finite state
machines: their behavior is driven by probabilistic models,
which, every day, instantiate a different variation of a baseline
routine, which is different for each resident, and accounts for
the time of day. Residents interact with appliances in several
ways: they use electric vehicles during working hours, and set
feasible due dates when plugging for recharge; residents use
hot water at reasonable hours, which results in mixing cold
water in the water heater; they program non-preemptible load
jobs at regular intervals for dishwashers and washing machines
and define feasible due dates. Finally, residents trigger non-
controllable loads at appropriate times, such as electric cooking
appliances, lighting and entertainment appliances.

LV network voltage drop is evaluated by using the DIgSI-
LENT grid simulator [21]: for each time step, the household
simulator determines the load imposed on the grid at the point
of common coupling (PCC) of each household. Such data is
automatically imported in DIgSILENT, and a power-flow com-
putation is triggered. As a result, voltage drop measurements at
the PCC of each household are available and will be considered
in the following time step.

IV. EXPERIMENTAL VALIDATION OF
FULLY-DECENTRALIZED ALGORITHMS

In this section we present an experiment demonstrating
the effectiveness of the proposed fully-decentralized algorithm
when no communication infrastructure is available. In particu-
lar, we consider the problem of controlling a simple domestic
water heater with a capacity of 200 liters and a 3kW heating
element. The task is to maintain the water temperature in
the tank within the temperature range [58 − 62]C (at this
temperature, the tank’s thermal dispersion is roughly 40W), by



Fig. 3. Top: aggregate load profile (one phase only) for a given branch
of the Asilo transformer, for whole day of Feb, 1 2013. Middle: measured
voltage profile at household HH06 (which is downstream the same branch)
for the corresponding period; note that voltage drop is clearly correlated to
the aggregate load. We further illustrate the algorithm’s behavior when run
at 12:00 the same day (vertical gray line). First, the algorithm estimates the
future voltage profile (dotted blue line) according only to measurements taken
in the previous days; then, the algorithm schedules boiler loads using Model
Predictive Control (first row of red boxes): compared to the baseline control
(second row), such loads tend to be shifted to periods where transformer load
(unknown to the algorithm) will be low.

controlling an heating element which can be switched on and
off at different times (control variable). The baseline control
method – which is commonly implemented in appliances –
consists in turning the heater on as soon as the temperature
drops below the lower limit, and turning it off as soon as the
temperature exceeds the upper limit (threshold with hysteresis).
This results in a regular energy use pattern which is normally
observed in household load profiles also for other energy-
buffer appliances like freezers and air conditioners.

The algorithm takes control of such activity pattern, and
adjusts it in order to optimize energy loads while still meeting
the user requirements. In particular, in this experiment the
algorithm aims at shifting loads from periods where the LV
transformer is heavily loaded, to periods where the transformer
has a lighter load. However, in absence of an explicit com-
munication infrastructure, the algorithm is never aware of the
actual transformer load: therefore, we use the locally-measured
voltage drop as a rough estimation of transformer load, under
the assumption that the amount of measured voltage drop is
correlated to the transformer load. Therefore, the algorithm
will exploit the water’s attempt to shift the heating from
periods where the measured voltage is low, to periods where
it is higher (see Figure 3).

A. Correlation Between Measured Voltage Drop and Trans-
former Load

We tested this assumption in a separate experiment, where
we observed that voltage drop measured at the plug is in
fact correlated with transformer load. In general, we observed
that such correlation is maximized for households farther
away from the transformer (correlation coefficient larger than
|ρ| = 0.74), whereas it is reduced as the considered household
gets closer to the transformer (down to a still significant
correlation coefficient |ρ| = 0.21)

In the following, we consider the behavior of the algorithm
in a typical situation (household HH06) where the household
is at an average distance from the transformer (|ρ| = 0.35).

B. Algorithm Settings and Quantitative Behavior

We consider a period of three months, from Jan, 1 2013 to
March, 31 2013. In each household, the algorithm is configured
to ignore energy price and generate a 12-hour schedule for the
heating pattern, in order to optimize the grid stability objective.
In our simulation, the voltage is played back from the data
logged in the actual households in the same period. Future
voltages are predicted as follows: each day is divided in 15-
minute slots, and for each slot the voltage is predicted as the
average voltage measured in the same slot of the previous
5 days. No distinction is made between working days and
holidays, although this is going to be considered in future
work.

Every 30 minutes, the algorithm runs and generates a
new schedule which overrides the previously-computed one.
This is necessary in order to account for unpredicted events,
such as deviations from the predicted voltage, or e.g. the user
consuming some of the hot water, thus mixing cold water and
thus increasing the requirements for the future heating.

We now compare the load pattern generated by the algo-
rithm with the load pattern generated by the baseline control
mechanism. Both approaches draw the same total amount of
energy during the three considered months (i.e., approximately
86.3 kWh): we want to see how this energy is distributed
in time. By analyzing the aggregate load profile at the trans-
former, we observe that for one third of the time, the relevant
branch of the transformer was delivering less than 9.5kW; for
another third, it was delivering more than 14.2kW; and for the
remaining third, it was delivering an intermediate amount of
energy. Therefore, we define Elow as the total energy drawn by
the boiler during time periods when the transformer load was
less than 9.5 kW; Ehigh as the total energy drawn by the boiler
during time periods when the transformer aggregate load was
more than 14.2 kW; Emed otherwise.

For the boiler controlled by the baseline controller, Elow ≈
Emed ≈ Ehigh load ≈ 28.8 kWh, i.e. a similar amount of energy
is drawn when the transformer is under low or high load. On
the contrary, the algorithm is able to shift these loads in such a
way that Elow = 36.8 kW, Emed = 31.4 kW, and Ehigh = 18.1
kW. This shows that the proposed demand side management
algorithm, which relies only on measured voltage drops at
the plug, is able to shift most loads towards period with low
aggregate load at the transformer.



V. S2G AS A LABORATORY FOR SMART GRID
EXPERIMENTS

The experiment we described above only represents one of
the many possible tests made possible by the S2G infrastruc-
ture. Below, we report two examples of other ongoing activi-
ties, which yielded interesting and counterintuitive results.

A. What is the Advantage of a Communication Infrastructure?

One of the objectives of the S2G project consists in quanti-
fying the advantages of a communication infrastructure which
allows explicit coordination among different energy users. In
order to investigate this issue, we designed a simulated testbed
with 120 households, each of which is equipped with an algo-
rithm controlling its largest energy users (EV charging, water
and space heating, washing machine and dishwasher). In this
setup, algorithms are not provided with voltage measurements:
instead, they optimize energy use through communication with
controllers in neighboring households. After scheduling its
own loads, a controller shares its forcast load profile with
neighbors, which will take that into account during their
own optimization; the process is iterated as the algorithms
periodically reschedule their own loads accounting for the
loads of all known neighbors [22]. In particular, each controller
attempts to shift its loads from periods when the aggregate
loads of known neighbors is large, to periods when such
aggregate load is low; in this setting, the aggregate load of
known neighbors represents an approximation of the load at
the transformer.

Of course, the infrastructural investments for enabling
bidirectional communication among all controllers downstream
a given LV transformer is significant: we want to investi-
gate whether more limited (thus cheaper and more easily
implemented) communication infrastructure would still allow
algorithms to effectively flatten the aggregate load. In order
to test the effects of limited communication infrastructures,
we partition the 120 households in groups composed by few
households each (named communication neighborhoods), and
assume that all households within the same neighborhood can
communicate with each other, whereas no communication can
occur across neighborhoods borders: then, small communi-
cation neighborhoods can be provided by very simple and
inexpensive communication technologies (like low-bandwidth
ad-hoc wireless networks). How small can we make the neigh-
borhoods without compromising the algorithms’ performance?
Experimental results show that, suprisingly, communication
neighborhoods composed by as few as 2 or 3 households
already yield a significant improvement in terms of load
flattening at the transformer, with very low bitrate require-
ments over the communication channel. Larger communication
neighborhoods, which would require significant infrastructure,
yield comparively negligible improvements.

Figure 4 reports quantitative simulation results supporting
such conclusion: the leftmost bar represents the baseline case,
in which controllers have no communication ability nor can
exploit local voltage measurements: a sample daily aggregate
load profile is represented below as a gray line. Bidirectional
communication within small neighborhoods can improve this
situation significantly (sample daily load profile reported below
as black line for neighborhoods composed by three house-
holds). Enabling larger groups of households to communicate

Fig. 4. Top bar chart: effects of different amounts of communication
pervasiveness on the instability of the aggregate load (measured as in [22]).
Below: sample daily aggregate load profile for the baseline case (gray line)
and 3-neighborhood case (black line).

(which requires significant infrastructure investments) yields
comparatively negligible improvements.

Note that in this set of experiments, controllers could
only use explicitly communicated information in order to
optimize loads, and were not provided with voltage measure-
ments. Comparing voltage-driven and communication-driven
optimization is planned in future work.

B. Effects of Volatile Pricing Profiles

As we previously introduced, when multiple objectives
must be optimized, the S2G algorithm implements a lexico-
graphic approach in which one objective is optimized with
more priority than others. Then, the system designer only
needs to determine the priority of each objective. Consider
the following example: a load could be shifted to any of two
time periods t1 or t2; energy price is higher in t1 than in t2,
but a higher transformer load is predicted in t2 than in t1.
Where should the algorithm place the load in this case?

In the following we investigate the case in which the
primary objective is price of energy for the user, and the
secondary objective is load flattening. Then, once the optimal
price is determined, the algorithm attempts to also optimize the
load, as soon as the resulting energy price is not increased
more than a given percentage η. This controls a tradeoff
between the interests of different stakeholders: for instance, if
we set η = 0, the user is sure that any schedules produced
by the algorithm will be optimal in terms of energy cost
– while load stability will still be optimized as soon as it
comes for free. In the example outlined above, if η = 0 the
algorithm would always choose t1, because placing the load
in t2, although beneficial for the network, would cost more.
Instaed, in case η = 10%, the algorithm would place the load
in t2 if and only if the price in t2 was at most 10% higher
than in t1.



When such mechanism is implemented, how do algorithms
behave when different pricing profiles are in place? We
explored the issue in [14], studying the collective behavior
of 100 households under different penetration rates of smart
households. We observed that, if algorithms control a large
fraction of all loads, volatile pricing profiles yield destabilizing
collective behaviors, unless we allow for a large deviation η
from the optimal price. This phenomenon is easily explained:
with η = 0, algorithms are greedy since they attempt to shift
all loads to lower-cost timeslots: then, peaks are created in
such timeslots, as all algorithms attempt to optimize energy
price.

From this point of view, the Swiss bi-level energy pricing
profile has very desirable characteristics. In this case, any
load placed within the low-tariff period can be shifted to
any other time within such period without any change in
cost to the user: then, once the energy cost is optimized,
algorithms retain a large amount of freedom for optimizing the
secondary objective without any change in costfor the user. Our
experiments show that under the swiss bi-level energy tariff,
algorithms can very effectively optimize energy costs while at
the same time flatting the aggregate load at the transformer.

VI. CONCLUSIONS

We presented the Swiss2Grid pilot and demonstration
project, aimed at investigating, from a practical perspective,
whether decentralized demand-side load management can limit
the infrastructure investments predicted in the next years to
accommodate renewable resources and electrical vehicles.

We outlined the main components of the project, which
involves a large effort in terms of data collection, concentrated
in a pilot site in Mendrisio (Ticino) where 20 households were
involved.

We described how decentralized decision making algo-
rithms, only exploiting information available locally, can shift
household loads in order to optimize multiple objectives at
once, namely energy costs for the user, and flattening of ag-
gregate loads at the transformer. Algorithms can be configured
by the system designer in order to handle in a meaningful
and predictable way the cases in which such objectives are
conflicting.

Preliminary results reported in this paper show that voltage
drops measured at the plug represent an useful piece of
information for optimizing loads, which limits the need for
an explicit two-way communication infrastructure. The voltage
measurement can be achieved with very simple electronic
circuits allowing the realization of cost-effective solutions.
Moreover, even when explicit coordination through communi-
cation is desired, we showed that very limited communication
infrastructures are sufficient. Finally, we reported results which
warn against the dangers of very volatile energy pricing
schemes, in case cost-optimizing algorithms are controlling a
large fraction of the total load.

Future work will focus on the investigation of the effect
of the algorithm to higher grid levels, the evaluation of
impact on present grid control processes and strategies and
the development of tariffs scenarios suitable for a decentralized
algorithm.
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