FINITE HELICAL AXIS BEHAVIOR IN CERVICAL KINEMATICS

Erik Cattrysse 1, Corrado Cescon 2, Ron Clijsen 3,4, Marco Barbero 2

1. Department of Experimental Anatomy, Fac. Physical Education and Physiotherapy, Vrije Universiteit Brussel- Belgium
2. University of Applied Sciences and Arts of Southern Switzerland, Department of Health Sciences, Manno, Switzerland
3. University of Applied Sciences and Arts of Southern Switzerland, Department of Health Sciences, Landquart, Switzerland
4. University College Physiotherapy, Thim Van Der Laan AG, Landquart, Switzerland.
5. Email: corrado.cescon@supsi.ch

BACKGROUND AND STUDY AIM
Although a far more stable approach and very common in spacecraft dynamics and graphic imaging, the Finite Helical Axis (FHA) struggles with interpretational and representational difficulties especially in clinical context and among medical professionals. The dispersion of the 3D-motion axis has been used to express the stability of the motion in knee kinematics and cervical spine analyses. The aim of the present study is to investigate the effect of noise and angle intervals on the estimation of FHA parameters and to introduce a novel approach for the quantification of the FHA behavior.

METHODS
A sample of 10 healthy subjects was studied, five males and five females, ranging in age from 21.5 to 28.9 years (24.4 ± 1.8 years). Cervical movements were registered with the Polhemus-G4, a non-invasive 3D-electromagnetic device at 120Hz. The subjects were asked to perform three series of movements of the head at a natural spontaneous speed (Cattrysse et al., 2012). Each series consisted of five consecutive pairs of opposite planar movements (flexion-extension, left-right rotation, left-right lateral bending). Each movement was portioned in 4 phases, between neutral and extreme left and right rotation. Minimum Convex Hull method and the angle between IHA (instantaneous Helical axis) and FHA were calculated as a measure of dispersion (figure 1). The effect of angle steps was calculated on the estimation global FHA parameters.

RESULTS
Figure 2 shows the effect of angle intervals on the estimation of global parameters extracted from groups of helical axis: mean angle between each axis and the main axis (Mean Angle), convex hull area (area CH). The mean angle between the main helical axis and each of the helical axis computed with different angle intervals did not depend from the angle interval. The convex hull area dramatically decreased with increasing angle steps. The optimal compromise, which was selected for further analysis was a 10 degree angle.

REFERENCES