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Abstract—The adoption of wearable devices is crucial in In-
dustry 5.0 applications, but the devices’ selection is cumbersome
for practitioners and researchers due to the wide availability
of models in the market. This work proposes a methodology
based on the Analytic Hierarchy Process method to support
the wearable devices selection in Industry 5.0 applications.
The methodology helps in identifying the most suitable devices
starting from the application requirements and devices’ features
analysis. We tested the methodology in a real industrial setting
(human fatigue detection), successfully identifying the two most
suitable wearable devices among a list of 110 alternatives.

Index Terms—Industry 5.0, Human Digital Twin, Wearable
Devices, Operator 4.0.

I. INTRODUCTION

Digital representation of production systems become in-
creasingly relevant in the last decade. There are countless
examples of machinery and process monitoring solutions,
including Digital Twins (DTs) [1], [2], to monitor machines,
processes and factories. However, the continuously evolving
needs of the manufacturing end-users require also to represent
humans in the digital world, including their intents, behaviours
and conditions, realising a so called Human Digital Twin
(HDT) [3]. The digital representation of workers enables
monitoring their conditions, allowing for (i) identifying the
activities they are carrying out, (ii) simulating their behaviour
for optimising production processes, (iii) improving the in-
teraction with factory entities, including robots and Auto-
mated Guided Vehicles (AGVs), and (iv) improving their well-
being [3]. In the monitoring context, wearable devices (also
referred to as wearables) play a fundamental role [4] [5]thanks
to the raising of advanced, precise, and low-cost sensors,
which enable the collection and processing of human-related
data to support analytics in a variety of applications [6].

Wearables are a category of electronic devices that can be
worn as accessories, embedded in clothing, or even implanted
in humans’ body. Wearables are crucial to enable the Industry
5.0 (I5.0) paradigm [7], which revolves around the concepts

of HDTs and Human-Cyber-Physical System to facilitate the
human-machine cooperation [8]. Different types of wearables
exist, including smartwatches, fitness trackers, smart clothing,
smart glasses. and their usage in manufacturing production
systems enables: (i) tracking and monitoring operator perfor-
mance, behaviours and conditions [9]; (ii) supporting operator
activities through innovative interfaces and support systems
[10]. For example, physiological data from wearables support
the estimation of other parameters (e.g., exertion and mental
stress of workers) useful for adapting the behaviour of au-
tomation systems like collaborative robots [11].

Nowadays, the large market of wearables makes it difficult
to identify those best suited for a specific industrial appli-
cation. Researchers, industrial experts and companies face
an increasing demand for technology selection methods and
approaches, to support companies embracing I5.0 [12], but
common practises and guidelines are still lacking.

This research presents a methodology to support wearable
devices selection in the context of I5.0 applications. The paper
is structured as follows: Section II highlights the relevance of
wearable devices in I5.0; Section III provides a description
of the proposed methodology and Section IV presents its
application in a real-world environment for wearable devices
selection to estimate the workers’ fatigue exertion; Section V
gives an overview of the next steps and future developments.

II. STATE OF THE ART

Wearables available in the market collect data on workers’
condition and behaviour, e.g., blood pressure, Heart Rate
(HR) and sounds, pulse, perspiration/sweat, temperature, and
a variety of metrics derived from motion and/or location mea-
surements (like the energy consumption). Wearables onboard
also environmental sensors to measure workplace-related met-
rics, like air quality, atmosphere pressure, noise, radiation,
humidity, temperature. Modern wearables support wireless



communication via a variety of technologies, including Wi-
Fi, ZigBee, Bluetooth Low Energy (BLE), UHF/HF RFIS and
others.In industry, wearables enable 4 functions: monitoring,
supporting, training, tracking [13]. Monitoring is achieved
with fitness trackers, smart rings, glasses, etc., and it cov-
ers the monitoring/control of both workers’ vital parameters,
and workplace parameters. Supporting increases workers’
physical capabilities (e.g., to minimise musculoskeletal risks)
by employing exoskeletons, patches, and wearable robots.
Training capabilities are mostly based on application of
VR/AR solutions like smart glasses, displays, helmets [14].
Tracking function enables collision prevention to increase
safety and manage accidents, which is one prominent and
widely exploited application within I5.0 use-cases [15].

To the best of our knowledge, this is the first work proposing
a methodology to select wearable devices for I5.0 applications.
However, some relevant works related to this topic proposed
systematic literature review of wearables for ergonomics ap-
plications [16], or decision support for choosing the best
suited wearables for studies related to sedentary behaviour
[17]. While these studies are useful for decision makers to
get insights, a proper selection procedure is not developed and
proposed. However, insights discussed in previous works are
suitable for inclusion in our methodology, either for features
identification or feature importance assessment.

Finally, if we extend the scope to other non-manufacturing
domains (especially in the context of health monitoring),
we find other works that could serve as benchmarks, e.g.,
consumer-oriented methodology for selecting wearables based
on everyday use criteria, and functionality criteria [18].

III. A METHODOLOGY TO SELECT WEARABLE DEVICES
FOR INDUSTRY 5.0 APPLICATIONS

The proposed methodology for selecting wearables suitable
for I5.0 applications starts with the identification of available
options available in the market, followed by a selection
process from the defined set of alternatives. The strength of
the methodology lies in its practicality and business-oriented
approach, which is lacking in other works on the topic [16].
The selection process is composed by the following 4 steps.
1. Features definition: this step identifies the requirements
of the chosen application, from which we can derive the
wearables features to use as selection criteria. Example of
requirements include the kind of data to collect, the commu-
nication protocols to support, the environment in which the
wearables should be employed. In the proposed methodology,
we consider two main types of features:

• Primary features: features required to meet the application
requirements. The number of primary features should be
kept as low as possible, and in any case lower than
10. This constraint is given by the adoption of Analytic
Hierarchy Process (AHP) in step 3.

• Secondary features: nice-to-have features relevant to the
selected application (e.g., battery charge cycles).

2. Device identification: the step deals with the creation
of a technological database containing the list of possible

All devices available on the market 
for the selected application

Classified list of devices (20% of 
the initial list)

List of maximum 5 devices

Device for the selected application

Classification through AHP 
evaluating maximum 9 
binary parameters involving 
experts and users

Technical assessment 
and selection

Qualitative comparison of 
the secondary features of 
the best 20% devices

Most established devices available 
on the market (e.g., wearables)

Device’s secondary features 
for the selected application

Devices’ primary features for 
the selected application

Application requirements

Selection based on release 
date, market availability, 
literature adoption, industrial 
adoption, etc.

Fig. 1. The methodology for wearable device selection for I5.0 applications.

alternatives. It requires collecting devices’ data sheets and/or
technical specifications from the manufacturers; these data
are used to assign values to both primary and secondary
features, based on different scales: linguistic (e.g., 5-point
Likert scale), boolean, or quantitative (which must undergo
a min-max normalization to enable the downstream AHP). A
systematic searching approach is required so that to ensure the
traceability of the results collected from the available sources
of information. During this step, pre-filtering criteria may be
applied to avoid the database size increasing indefinitely (e.g.,
discarding obsolete devices).It is worth noting that technolog-
ical databases may be already available in literature, possibly
containing obsolete devices or focusing on different features;
in this case, we suggest reusing the existing dataset, without
disregarding the device identification step (to add new devices
and cover all the features of interest).
3. Device filtering: it implies the general classification of the
collected devices to shortlist the alternatives to examine in
depth. Primary features are used to classify devices listed in
the technological database. We exploit the standard AHP to
assign different weights to features [19], so that adapt the
decision process to different application scenarios. AHP is
widely used in decision-making processes [20] and it applies
pairwise comparisons between features. The importance of
each feature with respect to all the other features is left to the
judgement of domain experts, which assign priority weights
by using the Row Geometric Mean Method [21]. However,
different experts may disagree on the importance of features;
to assess the inconsistency of expert evaluations, the method-
ology entails the analysis of the geometric consistency index
[22], the consistency ratio (CR), and the overall dissonance
(Psi). Finally, inconsistencies are mitigated by averaging the
scores given by multiple experts.

Given the scores assigned to each feature in step 2, and



their weights as computed by AHP, we can score and rank
each device by computing the weighted sum of its features.
We retain the best 20% of the devices for a further refinement
step. The refinement is based on the qualitative evaluation of
secondary features, given that these features are sometimes
complicated to compare (e.g., price, SDK readiness), or a
quantitative analysis requires much time (e.g., to assess the
data accessibility). This step ends with the selection of the
top-5 devices, sorted using the AHP method.
4. Device selection must allow the identification of the
best device(s). When possible, testing the selected devices
in a controlled environment gives the best insights about the
practical usage of the devices in the real application. If this
solution is not viable (e.g., because of the limited budget), a
further selection is needed, based on the secondary features.
For example, the battery duration could be a tiebreaker when
dealing with long working shift, while the accuracy of the
measured parameters is crucial in critical environments.

IV. WEARABLES SELECTION FOR FATIGUE ESTIMATION

We applied and validated the proposed methodology for
selecting a wearable device in an industrial application. The
goal was to monitor worker’s physiological data to enhance
the human-in-the-loop control of a production system. The
HDT is modeled using Clawdite, a flexible IIoT-based platform
supporting the creation of HDTs [23]. Collected data must be
reliable enough to feed an AI model that estimates the current
worker fatigue level.
1. Features definition (validation): Our industrial application
has the following requirements: (i) to collect workers physi-
ological data to feed an AI-based estimating the perceived
fatigue exertion; (ii) to transmit collected data from the device
to an external platform in near real-time; (iii) to comply with
an industrial environment characterised by dust, vibrations and
shocks; (iv) to be non-invasive and comfortable for workers,
with no obstructions; (v) to minimize the worn wearables.
Given these requirements, we derived primary (highlighted in
bold) and secondary features as follows:

• General characteristics: device type, wearing position,
screen presence, internal memory (if any), battery
duration (estimated) with or without active sensors (e.g.,
GPS), charging time, battery capacity, waterproof rating
(IP or ATM), weight, and price.

• Communication protocols: ANT+, BLE, Wi-Fi.
• SDK: availability of an SDK supporting real-time data

streaming directly from the device, or to communicate
via a smartphone application, or other generic APIs en-
abling communication (e.g., web platform availability);

• Physiological metrics: capabilities to measure features
relevant to the fatigue estimation, namely electromyog-
raphy (EMG), electrocardiogram (ECG), bioimpedance,
HR, HR variability (HRV), interval RR, peak to peak
interval (PPI), skin temperature (ST), galvanic skin re-
sponse (GSR) / electrodermal activity (EDA), blood pres-
sure, oxygen saturation, volume of oxygen consumed per
minute (V02 max), Pulse Plethysmogram (PPG).
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Fig. 2. AHP weights for primary features as provided by experts’ evaluation.

• On-boarded sensors: presence of specific sensors, in-
cluding HR meter, SpO2 sensor, pedometer, accelerome-
ter, gyroscope, magnetometer, barometer, GPS, altimeter,
thermometer, microphone, compass, ambient light sensor,
optical sensor, NFC.

2. Device identification (validation): to build the technolog-
ical dataset, we adopted an existing procedure to maintain the
accountability of our website searching, which is typical for
any multi-criteria decision-making problem [24]. We searched
the Web for terms “smart band” and “smartwatch” and revised
scientific articles, producers’ websites, as well as comparisons
and rankings available in blog posts. We limited the search
scope to commercial and medical devices only. At the end
of this step, the technological dataset contains a list of 110
wearable devices currently available in the market, along with
their primary and secondary features. Each device in the
dataset has been analysed individually by integrating pieces
of information from several sources: manufacturers’ websites,
technical data sheets, manuals and online articles. Each of
these characteristics individually contributes to determining
the adequacy of the device for the identified application. In
this classification, some features are not filled because of the
limited information available (e.g., complete specifications are
not released by some manufacturers). However, the classifica-
tion is sufficiently wide to cover the scope of this research.
3. Device filtering (validation): Obsolete devices and those
not fitting the application requirements has been removed from
the dataset. We also discarded devices currently not available
in the market. When different models of the same device are
available, we prefer including the latest model only, because
usually new models come with enhanced features, and new
versions fix existing bugs. By applying the constraints above,
the technological dataset has been reduced to 89 devices.1

We classified primary features of the remaining devices by
adopting the AHP method. 5 experts assigned prior weights of
primary features, as plotted in Figure 2. We applied AHP to
score the devices based on their primary features relevance,
and we retained the top-18 devices (20% highlighted in
our dataset1). We then evaluated the 18 devices according
to their secondary features. We paid particular attention to
SDK usability, which was crucial for the data transmission

1The full version of the dataset is available at https://clawdite.spslab.ch/

https://clawdite.spslab.ch/


development. The qualitative assessment led to the selection
of 5 devices: Garmin Venu 2, Garmin Instinct, Polar H10,
Garmin Vivosmart 4, Empatica E4.
4. Device selection (validation): We made a more in-depth
analysis of the selected devices to reduce the number of
wearables to wear. For this manual analysis, we considered
the data format of the tracked parameters, as well as their
granularity (i.e., acquisition frequency and possible aggrega-
tions). To assess the granularity, we used the available SDKs
to inspect the collected data. Also, we maximized the number
of measurable parameters, while minimizing the number of
devices, paying attention to the specific measured parameters
(e.g., HR is crucial in our application). After this analysis, we
selected the Empatica E4 and Polar H10. The main reason
behind this choice is in their complementary for the fatigue
estimation. In particular, the first is a medical device measuring
different parameters with a great accuracy, but, for this same
reason, it does not provide continuous HR data if monitoring
conditions are not reliable. Polar H10 (a chest band) fills this
gap by providing very precise measuring of HR.

V. CONCLUSIONS

This paper provides a methodology for researchers and
practitioners aiming to support the selection of wearable
devices for I5.0 applications. We tested the methodology
to select wearables for fatigue estimation in a real-world
industrial application, with appreciable results. As future work,
we plan to generalize the methodology to consider broader
categories of devices (e.g., collaborative robots, Virtual Re-
ality devices), not necessarily wearables but still targeting
Monitoring, Supporting, Tracking and Training activities. The
generalized methodology will be applied in a different project
where the main goal is to monitor users using cameras instead
of wearables. An interesting direction for this approach is
to develop a hierarchical selection criteria, customized for
specific applications. We will investigate also the integration
of different multi-criteria decision-making techniques in our
methodology (e.g., fuzzy approaches for qualitative judge-
ments by experts, TOPSIS).
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